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Quantum capacities of transducers

Chiao-Hsuan Wang 1,2,3,4 , Fangxin Li4 & Liang Jiang 4

High-performance quantum transducers, which faithfully convert quantum
information between disparate physical carriers, are essential in quantum
science and technology. Different figures of merit, including efficiency,
bandwidth, and added noise, are typically used to characterize the transdu-
cers’ ability to transfer quantum information. Here we utilize quantum capa-
city, the highest achievable qubit communication rate through a channel, to
define a single metric that unifies various criteria of a desirable transducer.
Using the continuous-time quantum capacities of bosonic pure-loss channels
as benchmarks, we investigate the optimal designs of generic quantum
transduction schemes implemented by transmitting external signals through a
coupledbosonic chain.With physical constraints on themaximal coupling rate
gmax, the highest continuous-time quantum capacity Qmax≈31:4gmax is
achieved by transducers with amaximally flat conversion frequency response,
analogous to Butterworth electric filters. We further investigate the effect of
thermal noise on the performance of transducers.

Classically, transducers are devices, such as antenna andmicrophones,
that can convert signal from one physical platform to another. In
quantum technology, transducers are essential elements that can
faithfully convert quantum information betweenphysical systemswith
disparate information carriers1–3. High-performance quantum trans-
ducers are the key to realize quantum networks4–7 by interconnecting
local quantum processors, such as microwave superconducting
systems8,9, with long-range quantum communication carriers, such as
optical fibers10. Tremendous progress has been made in a variety of
coherent platforms for microwave-to-optical11–23, microwave-to-
microwave24,25, and optical-to-optical26–29 frequency conversion.

Coherent conversion of quantum information between distinct
devices is a challenging task. A functional quantum transducer has to
satisfy demanding criteria simultaneously—high conversion efficiency,
broad bandwidth, and low added noise—and its performance has been
characterized by these three figures of merit30. On the other hand, a
unified metric to assess the quantum communication capability of
transducers is lacking. For example, one transducer may have a high
conversion efficiencybut operateswithin a narrowbandwidth, another
may allow broadband conversion at a lower efficiency. It is hard to
compare their transmission capability given separate criteria.

Quantum capacity, the highest achievable quantum commu-
nication rate through a channel31–34, provides a natural metric to

characterize the performance of quantum transducers. Consider a
generic direct quantum transduction process by propagating
external signals through a coupled bosonic chain35. After sending
an input signal through the transducer, the output signal will be a
mixture of the input signal and environmental noise. Assuming the
environmental noise is thermal and that the transducer has no
amplification effect, the action of the transducer can be described
as a bosonic thermal-loss channel that attenuates the input state
and combines it with a noisy thermal state36. We can thus model
direct quantum transducers as bosonic thermal-loss channels and
evaluate their quantum capacities.

In this article, we use quantum capacity to assess the intrinsic
quantum communication capability of transducers. Using the
continuous-time pure-loss quantum capacities of transducers as
benchmarks, we discover that the optimal designs of transducers are
those with maximally flat frequency response around the unity-
efficiency conversion peak. Under the physical constraint of a boun-
ded maximal coupling rate gmax between the bosonic modes, the
maximal continuous-time quantum capacity Qmax≈31:4gmax is
achievedbymaximallyflat transducers implementedby a longbosonic
chain. We further include the effect of thermal noise from the envir-
onment by considering additive lower and upper bounds on quantum
capacities of thermal-loss channels. Our methods provide a unified
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quantity to assess the performance of transducers across various
physical platforms and suggest a fundamental limit on the quantum
communication rate set by the physical coupling strength.

Results
Capacity as a metric for quantum transducers
We use the concept of quantum capacities of bosonic channels to
assess the performance of direct quantum transducers. The quantum
capacity quantifies the maximal achievable qubit communication rate
through a quantum channel. Here we focus on direct quantum trans-
duction achieved by directly converting quantum signals between
bosonic modes via a coherent interface. At a given frequency ω in the
appropriate rotating frame, assuming no intrinsic losses and no
amplification gain, a direct quantum transducer with conversion effi-
ciency η[ω] can be modeled as a Gaussian thermal-loss channel36

described by the relation between the input and output modes, up to
phase shifts,

b̂out½ω�=
ffiffiffiffiffiffiffiffiffi
η½ω�

p
âin½ω� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η½ω�

p
b̂in½ω�, ð1Þ

where âin½ω� is the input signal mode sent out by Alice, b̂out½ω� is the
output signal mode received by Bob, and b̂in½ω� is the noisy input state
from the environment with a mean thermal photon number
�n½ω�= b̂

y
in½ω�b̂in½ω�

D E
(see Fig. 1a). Note that we have no access to the

reflective signal at Alice’s side.
When the thermal photon number from the environment is neg-

ligible, �n≈0 for optical systems or via cooling25,37, this special case of
thermal-loss channels is called the pure-loss channel. For pure-loss
channels, their capacities are additive and can be analytically deter-
mined. Specifically, for one-way quantum communication (for exam-
ple, from Alice to Bob only), for discrete-time signals at a given
frequency ωwith a fixed conversion efficiency η[ω], the one-way pure-
loss capacity is given by38

q1½ω�= max log2
η½ω�

1� η½ω�

� �
,0

� �
, ð2Þ

which is the maximal amount of quantum information that can be
reliably transmittedper channel use. This channel has infinite quantum
capacity for ideal conversions, η→ 1, q1→∞, and has vanishing capacity
when more than half of the signal is lost, η∈ [0, 1/2), q1 = 0.

In reality, a quantum transducer has a finite conversion band
and the conversion efficiency should be frequency-dependent.
Treating different frequency modes within the conversion band as

parallel quantum channels and taking the continuous limit in ω,
here we define a continuous-time one-way pure-loss capacity of a
quantum transducer,

Q1 �
Z

q1½ω�dω: ð3Þ

In contrast to the discrete-time one-way pure-loss capacity expression
Eq. (2) that quantifies the maximal achievable quantum communica-
tion rate per channel use, the continuous-time quantum capacity
defined in Eq. (3) is the maximal amount of quantum information that
can be reliably transmitted through the transducer per unit time. This
form of capacity is a direct analog to the Shannon capacity of classical
continuous-time communication channels subject to frequency-
dependent uncorrelated noises39.

If the pure-loss channel is further assisted by two-way classical
communication (between Alice and Bob) and local operations, the
corresponding discrete-time two-way pure-loss capacity40 is given by

q2½ω�= � log2 1� η½ω�ð Þ: ð4Þ

This channel again has infinite quantumcapacity for ideal conversions,
η→ 1, q2→∞, but has vanishing capacity only when the efficiency goes
to zero, η→0, q2 = 0. The corresponding continuous-time two-way
pure-loss capacity is defined as

Q2 �
Z

q2½ω�dω: ð5Þ

The continuous-time pure-loss quantum capacities Q1 and Q2

defined above incorporate both concepts of efficiency and bandwidth
and set the fundamental limit on the quantum communication rate
based upon intrinsic transducer properties. To characterize these
maximal achievable rates, we have assumed that infinite energy is
available at the transducers. In practice, quantum capacities of trans-
ducers shall be lower in energy-constrained scenarios41,42. We empha-
size thatQ1 andQ2 have the unit of qubits per second, andwewill show
in later text that these highest achievable communication rates are
linked to the maximal coupling rates in the underling physical trans-
ducer system.

Physical limit on the quantum capacities of transducers
The conversion efficiency of a transducer, η[ω], is determined by the
parameters of its underlying physical implementation. We are

Fig. 1 | Generic model of quantum transducers. a A quantum transducer that can
faithfully convert quantum states between different input and output frequencies
ωin and ωout (in the lab frame), which is modeled as a thermal-loss channel with

transmittance η[ω]. b Schematic of a N-stage quantum transducer through a cou-
pled bosonic chain connected to external input and output signals.
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interested in how the quantum capacities of transducersQ1 andQ2 are
limited by the physical parameters of the transduction platform.
Consider the generic model of direct quantum transducer11–25,27

implemented by a coupled bosonic chain with N+2 bosonic modes m̂j ,
where the twoendmodes, m̂1 = â and m̂N + 2 = b̂, are coupled to external
signal input and output ports at rates κ1 = κa and κN+2 = κb, respectively
(see Fig. 1b). Coherent quantum conversion can be realized by pro-
pagating bosonic signals frommode â (at frequency ωa) to mode b̂ (at
frequencyωb) throughN intermediate stages, andwe call this interface
a N-stage quantum transducer. The conversion efficiency of a N-stage
transducer is a frequency-dependent function determined by system
parameters12,35,

ηN = ηN ½ω�ðκa,κb, Δj

n o
, gj

n o
Þ, ð6Þ

where Δj is the detuning of mode m̂j in the rotating frame of the laser
drive(s) that bridges the up- and down-conversions between the input
and output signals, and gj is the coupling strength of the beam-splitter
type interaction between the neighboring bosonic pair m̂j and m̂j + 1.
Here we have assumed the system has no intrinsic losses and we will
take gj’ s to be real and positive without loss of generality.

For realistic physical implementations, the coherent coupling
between neighboring modes is typically the most demanding
resource. Therefore, under the physical constraint 8j,gj ≤ gmax, we look
for the optimized choice of parameters κa, κb, Δj’s, and gj’s to achieve
the maximal possible Q1 and Q2 for N-stage quantum transducers. To
attain the highest possible capacity, the physical parameters of the
transducer have to satisfy the generalized matching condition35 such
that ηN[ωc] = 1 at some frequency ωc. Note that the physics of the sys-
tem is invariant under an overall shift in energy by choosing a different
rotating frame, which corresponds to the relocation of ωc.

Using the continuous-time pure-loss capacities as the bench-
marks, we find thatmaximal values ofQ1 andQ2 are achievedwhen the
N-stage quantum transducer has a maximally flat (MF) efficiency,

∂ηMF
N ½ω�
∂ω

����
ω=ωc

= � � � = ∂
2N + 3ηMF

N ½ω�
∂ω2N + 3

�����
ω=ωc

=0: ð7Þ

Intuitively, with a flat plateau around ηN[ωc] = 1, this maximally flat
transducer design guarantees a local maximum for Q1 and Q2, and we
have seen strong numerical evidence that this solution is likely a global
maximum as well under the physical constraint 8j,gj ≤ gmax (see
Methods). In the later discussion, we will use this as an optimized
design for N-stage transducers. For N-stage transducers under the
above physical constraint, we find that the optimal parameters satis-
fying Eq. (7), denoted by ⋆, are

κ?
a = κ

?
b =2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 3π

2ðN + 2Þ

h i
sin π

2ðN + 2Þ

h i
vuuut gmax, ð8Þ

g?
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin π

2ðN + 2Þ

h i
sin 3π

2ðN + 2Þ

h i
sin ð2j�1Þπ

2ðN + 2Þ

h i
sin ð2j + 1Þπ

2ðN + 2Þ

h i
vuuut gmax, ð9Þ

and 8j,Δ?
j = � ωc (see Methods). Note that the optimized parameters

are symmetric, g?
j = g

?
N + 2�j , κ

?
a = κ

?
b, and g?

1 = g
?
N + 1 = gmax.

AN-stagemaximallyflat transducer is a direct analog to a (N + 2)th
order Butterworth low-pass electric filter (see Methods). The

maximally flat efficiency ηMF
N ½ω� has a general form

ηMF
N ½ω�= 1

ððω� ωcÞ=�gNÞ2ðN + 2Þ + 1
, ð10Þ

where

�gN � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

π
2ðN + 2Þ

� 	
sin

3π
2ðN +2Þ

� 	s
gmax: ð11Þ

Here �gN is themean coupling given by �gN =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ?
aκ

?
b

p QN + 1
j = 1 g?

j
N + 2
q

, which
can be inferred from Eq. (23) in Methods. �gN also has the physical
meaning of the transducer bandwidth—the full width at half maximum
of ηMF

N ½ω� is 2�gN . The value of �gN=gmax monotonically decreases with N
as shown in Fig. 2b. The monotonically decreasing �gN might seem
counter-intuitive at first glance, but the choice of parameters actually
enables maximally flat transmission band, which can take the full
advantageof thediverging channel capacity atη[ωc] = 1 to optimize the
overall performance under the given physical constraint.

Given this general form, we can find their discrete-time pure-loss
capacities at a given frequency, qN,MF

1 ½ω� and qN,MF
2 ½ω�, and then eval-

uate the continuous-time pure-loss capacities of the maximally flat
transducers (see Fig. 2c–f). Specifically,

QN,MF
1 =

4ðN + 2Þ
logð2Þ �gN , ð12Þ

Fig. 2 | Diagrams for N-stage quantum transducers with maximally flat con-
version efficiency. aMaximallyflat efficiency function ηMF

N ½ω� for differentN.bThe
mean coupling �gN as a function of N. c The discrete-time one-way pure-loss capa-
city, qN,MF

1 ½ω�, for different N. d The continuous-time one-way pure-loss capacity,
QN,MF

1 , as a function of N. e The discrete-time two-way pure-loss capacity, qN,MF
2 ½ω�,

for different N. Inset shows the gain in capacity assisted by the two-way protocol,
qN,MF
2 ½ω� � qN,MF

1 ½ω�. f The continuous-time two-way pure-loss capacity, QN,MF
2 , as a

function of N. Inset shows the gain in capacity assisted by the two-way proto-
col, ðQN,MF

2 � QN,MF
1 Þ=gmax.
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QN,MF
2 =

2π

logð2Þ sin π
2ðN + 2Þ

h i �gN , ð13Þ

for one-way and two-way protocols, respectively. At large N, the
continuous-time pure-loss quantum capacities saturate to the same
value

lim
N!1

QN,MF
1 = lim

N!1
QN,MF

2 � Qmax =
4

ffiffiffi
3

p
π

logð2Þ gmax: ð14Þ

The above expression represents a physical limit on the maximal
achievable quantum communication rate through a transducer,
Qmax≈31:4gmax (qubit/s). The quantum communication rate through a
transducer is limited by themaximal available coupling strengthwithin
the bosonic chain.

We now compare the performance of the maximally flat trans-

ducer to uniformly coupled transducers with 8j,~gj = gmax, ~Δj = � ωc,

and ~κa = ~κb =2gmax for even N, and ~κa = ~κb =2
ffiffiffiffiffiffiffiffi
N + 3
N + 1

q
gmax for odd N (see

Methods).

The optimal efficiency functions for N-stage uniform transducers
are shown in Fig. 3a and their continuous-time one-way pure-loss
capacities,QN,Uni

1 , as a function ofN are shown in orange in Fig. 3b.One
can see that a N-stage maximally flat transducer may transmit about
twice amount of quantum information per unit time compared to a N-
stage uniform transducer with a uniform coupling rate gmax. The
achievable quantum communication rate can be even lower for ran-
dom transducer parameters.

Transducers under thermal noise
For realistic transduction schemes within a noisy environment, the
quantum capacity will decrease due to the effect of thermal noise.
The quantum capacities of Gaussian thermal-loss channels have yet
to be analytically determined, but we can approach their values
using additive upper and lower bound expressions. We now extend
the continuous-time quantum capacity for thermal-loss channels
with non-zero �n. In typical experimental situations, the conversion
bandwidth is much smaller than the frequency scale of the thermal
environment, and thus the change in the mean thermal photon
number should be negligible within the conversion band. There-
fore, we will treat �n as a constant in evaluating the continuous-time
quantum capacities. For one(two)-way scenario, we can define the
continuous-time one(two)-way thermal-loss capacity lower(upper)
bound for transducers as

Q1ð2Þ,�n,LðUÞ �
Z

q1ð2Þ,�n,LðUÞ½ω�dω, ð15Þ

where q1ð2Þ,�n,LðUÞ is the discrete-time one(two)-way thermal-loss
capacity lower(upper) bound (see Methods).

The continuous-time quantum capacities of maximally flat trans-
ducers with different mean thermal photon numbers are shown in
Fig. 4. One can see that the quantum capacities of maximally flat
transducers are less susceptible to thermal loss at large N, and the
difference between the upper bound, lower bound, and Qmax also
vanishes at large N (see Methods for analytical expansions). Based on
the above property and numerical evidence (see Methods), it is highly
likely that maximally flat transducers are still optimal under the effect
of thermal loss.

Discussion
We have used the continuous-time quantum capacities to characterize
the performance of direct quantum transducers. By considering the
generic physical model of an externally connected bosonic chain with
a bounded coupling rate gmax, we showed that the maximal qubit
communication rate of a transducer is given by Qmax≈31:4gmax. Such
maximal capacity is achieved by maximally flat N-stage quantum
transducerswithN→∞. Note that our result has no contradiction to the
Lieb-Robinson bound43—after signals arrive at a delayed time,
increasing with N as predicted by Lieb and Robinson, the qubit com-
munication rate is upper-bounded by the quantum capacity of the
transducer that saturates to a finite valueQmax at largeN in the optimal
scenario.

This work provides a fundamental limit of transducer capa-
cities in terms of coupling strength, and offers a quantitative com-
parison for direct transducers across platforms that consolidates
distinct metrics of efficiency, bandwidth, and added thermal noise.
Our method can be directly extended to transducers with intrinsic
losses by considering the dependence of the conversion efficiency
ηN on the intrinsic dissipation rates12,35. Intriguing future works
include exploring bosonic encodings, such as GKP codes44, to
approach the quantum capacity bound and investigating

Fig. 3 | Diagrams for N-stage quantum transducers with uniform couplings.
a Optimal efficiency function ηUni

N ½ω� for N-stage transducers with uniform cou-
plings. b Continuous-time one-way pure-loss quantum capacities of N-stage maxi-
mally flat transducers QN,MF

1 (purple) and uniform transducers QN,Uni
1 (orange).

Fig. 4 | Quantum capacities of maximally flat transducers under thermal loss.
a Continuous-time one-way thermal-loss capacity upper and lower bounds with
mean thermal photon number �n= 1. b Continuous-time one-way thermal-loss
capacity upper and lower bounds with mean thermal photon number �n= 10.
c Continuous-time two-way thermal-loss capacity upper and lower bounds with
mean thermal photon number �n= 1. d Continuous-time two-way thermal-loss
capacity upper and lower bounds with mean thermal photon number �n= 10. We
also show the pure-loss capacities QN,MF

1 and QN,MF
2 corresponding to �n=0 for

comparison.
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superadditivity of general quantum capacities. Here we have
focused on direct transducers that can be well-modeled as a Gaus-
sian thermal-loss channel with neither amplification gain nor access
to the reflective signal. A more general framework incorporating
disparate transduction schemes, like direct transduction with
amplification45 due to extra two-mode squeezing couplings, or
entanglement-based46–48, adaptive-based49, and interference-
based50,51 transductions that involve the reflective signal, is left as
an open frontier to be explored.

Methods
Conversion efficiency of N-stage quantum transducers
We consider N-stage quantum transducers composed of a coupled
bosonic chain with a Hamiltonian

ĤN = �
XN + 2

j = 1

Δjm̂
y
j m̂j +

XN + 1

j = 1

gj m̂y
j m̂j + 1 + m̂

y
j + 1m̂j


 �
, ð16Þ

where m̂y
j , m̂ are the creation and annihilation operators ofmode j,Δj is

the detuning of mode j in the rotating frame, and gj represents the
coupling strength between neighboring modes. We can take g 0

js to be
real and positive without loss of generality by absorbing their phases
intomodeoperators. The conversion efficiency of aN-stage transducer
without intrinsic loss is given by35

ηN ½ω�=
ffiffiffiffiffiffiffiffiffiffi
κaκb

p QN + 1
j = 1 gj

DN ½ω�

�����
�����
2

, ð17Þ

where DN[ω] is the determinant of a (N+2) × (N+2) tridiagonal
matrix

DN ½ω� �

χ�1
a ig1 0 � � � � � � 0

ig1 χ�1
2 ig2

. .
. ..

.

0 ig2
. .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. . .

.
0

..

. . .
. . .

. . .
.

igN + 1

0 � � � � � � 0 igN + 1 χ�1
b

�������������������

�������������������

: ð18Þ

Here χ j = ðiðω+ΔjÞ+ κj=2Þ�1 is the susceptibility of mode m̂j , with
κ1 = κa, κN+2 = κb, and κj = 0 otherwise.

Physical parameters of maximally flat transducers
In this section we will prove that the optimal parameters given in Eqs.
(8) and (9) give rise to maximally flat efficiency for transducers. Con-
sider a (N+2) × (N+2) tridiagonal matrix FN+2 defined as

FN + 2 �

�κ?
a=2 ig?

1 0 � � � 0

ig?
1 0 . .

. . .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
. . .

.
0 ig?

N + 1

0 � � � 0 ig?
N + 1 κ?

b=2

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð19Þ

The generalized matching condition of the transducer with
these parameters κ?

a, κ?
b, Δ?

j ’s, and g?
j ’s is given by

M?
N ½ω�= det iðω� ωcÞIN + 2 + FN + 2

� 

=0, with the physical interpreta-

tion of generalized impedance matching criteria that leads to unity
conversion efficiency and zero reflection35.

This matrix FN+2 is a nilpotent matrix such that all its eigenvalues

are 0 and thus M?
N ½ω�= ðiðω� ωcÞÞN + 2, since it is a similarity transfor-

mation of another nilpotent matrix AN+2
52 up to an energy scaling,

FN + 2 = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin π

2ðN + 2Þ

h i
sin 3π

2ðN + 2Þ

h ir
gmaxP

�1
N + 2AN + 2PN + 2, where

AN + 2 �

�f 1 f 1 0 � � � 0

�f 2 0 f 2
. .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
. . .

.
0 f N + 1

0 � � � 0 �f N + 2 f N + 2

0
BBBBBBBBB@

1
CCCCCCCCCA
, ð20Þ

PN + 2 �

1 0 � � � � � � 0

0 i
ffiffiffiffi
f 2
f 1

q
. .
. . .

. ..
.

..

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. ðiÞN
ffiffiffiffiffiffiffi
f N + 1
f 1

q
0

0 � � � � � � 0 ðiÞN + 1
ffiffiffiffiffiffiffiffi
f N +2
f 1

q

0
BBBBBBBBBB@

1
CCCCCCCCCCA
, ð21Þ

and f k =
1

2 sin ð2k�1Þπ
2ðN + 2Þ

� �. In other words, this choice of optimal parameters

leads to a (N+2)-fold degenerate root at ω =ωc to achieve unity con-
version efficiency.

For transducers without intrinsic loss, which can be modeled as
lossless beam splitters, the transmittance ηN[ω] is related to the
reflectance RN[ω] by a simple equation 1 − ηN[ω] =RN[ω]. Given the
expression of the reflectance

R?
N ½ω�=

∣M?
N ½ω�∣2

∣D?
N ½ω�∣2

, ð22Þ

where the superscript ⋆ denotes the association with MF parameters
κ?
a, κ

?
b, Δ

?
j ’s, and g?

j ’s, along with the N-stage conversion efficiency
expression Eq. (17), we arrive at the maximally flat efficiency of trans-
ducers

η?
N ½ω�= 1� R?

N ½ω�=
κ?
aκ

?
b

QN + 1
j = 1 g?2

j

ðω� ωcÞ2ðN + 2Þ + κ?
aκ

?
b

QN + 1
j = 1 g?2

j

=ηMF
N ½ω�: ð23Þ

Correspondence between maximally flat transducers and
Butterworth filters
A N-stage transducer with maximally flat design is a direct analog to a
(N + 2)th order Butterworth low-pass electric filter53. The (N + 2)th
order Butterworth filter has a frequency response (gain)

∣tBWN + 2½ω�∣2 =
1

ðω=ωcutÞ2ðN + 2Þ + 1
, ð24Þ

where tBWN + 2½ω� is the transmission coefficient of the Butterworth filter
with a cutoff frequency ωcut. The frequency response of the Butter-
worth filter is identical to the conversion efficiency function of a
maximally flat transducer while working in the rotating frame that sets
the unity-efficiency conversion frequency at ωc =0.

Moreover, a rigorous connection between the physical para-
meters of open-bosonic-chain transducers and electric ladder net-
works has been established35. One can verify the correspondence
between a N-stage maximally flat transducer and a (N + 2)th order
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Butterworth filter by showing that

κ?
a=�gN=2 =R1=L1,

g?2
j =�g2

N = L�1
j C�1

j + 1, odd j

g?2
j =�g2

N =C�1
j L�1

j + 1, even j

(
,

κ?
b=�gN=2 =RN + 2L

�1
N + 2, oddN

κ?
b=�gN=2=R

�1
N + 2C

�1
N + 2, evenN

(
,

ð25Þ

where Rj, Lj, and Cj correspond to resistance, inductance, and capaci-
tance of the normalized Butterworth filter as shown in Fig. 5. One may
also add generalized resistancesRj ’s of imaginary values to include the
shifts in the detunings, Δj = −ωc. The nilpotent matrix argument pro-
vided in theprevious sectioncan also serve as amathematicalproof for
the analytical formulas of Butterworth filter circuit parameters, which
were originally determined from observation53.

Numerical evidence for the optimality of maximally flat
transducers
In this section, we provide numerical evidence showing that for N-
stage direct transduction, under the physical constraint

8j, gj ≤ gmax, the set of parameters for a maximally flat transducer
likely gives rise to global maxima of the continuous-time pure-loss
quantum capacitiesQ1 andQ2. For the 0-stage case, we numerically
optimize the continuous-time one- and two-way pure-loss quan-
tum capacities by an exhaustive search over all the free parameters
κa, κb, and Δ ≡ Δa − Δb in the unit of gmax = ga. In Fig. 6a, we show a
three-dimensional contour plot of the two-way continuous-time
pure-loss quantum capacity for 0-stage transducers, QN =0

2 , in the
parameter space of κa, κb, and Δ. To identify the optimal para-
meters, we show the two slices in the parameter space where the
maximum locates. A 2D slice assuming symmetric external cou-
plings κa = κb = κ is presented in Fig. 6b, and another slice under the
resonant condition between the two modes Δ = 0 is shown in
Fig. 6c. We can see that the set of analytically determined maxi-
mally flat parameters, Δ?

a =Δ
?
bð= � ωcÞ and κ?

a = κ
?
b =2gmax as marked

by the white star, coincides with the location of the numerical
maximum. The same finding applies to the continuous-time one-
way pure-loss quantum capacity, which has a qualitatively similar
structure in the parameter space.

For the 1-stage case, we numerically optimize the two-way
continuous-time quantum capacity by an exhaustive search over
five free parameters κa, κb, Δ

0
b � Δa � Δb, Δ

0
2 � Δa � Δ2, and gb, in

the unit of gmax = ga. We find that the global maximum is achieved
when the three modes are resonant, Δa = Δ2 = Δb. Under the all-
resonant assumption, we present the numerical search over the
rest of the three parameters κa, κb, and gb in Fig. 7. In Fig. 7a, we
show a three-dimensional contour plot of the continuous-time
two-way pure-loss quantum capacity for 1-stage transducers,QN = 1

2 ,
in the parameter space of κa, κb, and gb. To identify the optimal
parameters, we again show two slices in the parameter space
where the maximum locates. A 2D slice assuming symmetric
external couplings κa = κb = κ is presented in Fig. 7b, and another
slice with symmetric internal couplings gb = ga = gmax is shown in
Fig. 7c. We can see that the set of the analytically-determined
maximally flat parameters, Δ?

a =Δ
?
2 =Δ

?
b( = − ωc), κ?

a = κ
?
b = 2

ffiffiffi
2

p
gmax,

and g?
a = g

?
b = gmax as indicated by the white star, coincides with the

location of the numerical maximum.
For higher number of stages, we assume the system is under

the all-resonant condition and is symmetric,∀ j, Δj = − ωc, κa = κb,
and gj = gN+2−j, to reduce the number of optimization parameters.
For the continuous-time one- and two-way pure-loss quantum

Fig. 5 | Butterworth filter network design. (N+2)th order Butterworth filter net-
work with normalized circuit elements R1 =RN+2 = 1, Lj = 2 sin

ð2j�1Þπ
2ðN + 2Þ

h i
, and

Cj = 2 sin
ð2j�1Þπ
2ðN +2Þ
h i

such that ωcut = 153.

Fig. 6 | Diagrams for the numerical search of the optimized 0-stage transducer
parameters that can attain the highest possible continuous-time two-way
pure-loss quantum capacity. a Contour plot of the continuous-time two-way
pure-loss capacity forN =0,QN =0

2 , in the parameter space of κa, κb, and Δ ≡Δa −Δb.
b A slice in the parameter space with symmetric external coupling rates κa = κb = κ.
The white star represents the location of the maximally flat parameters. c A slice in
the parameter space under the resonant condition Δ =0. The white star represents
the location of the maximally flat parameters.

Fig. 7 | Diagrams for the numerical search of the optimized 1-stage parameters
to achieve the highest possible continuous-time two-way pure-loss capacity
under the resonant assumption Δa =Δ2 =Δb. a Contour plot of the continuous-
time two-waypure-loss capacity forN = 1,QN = 1

2 , in theparameter spaceofκa, κb, and
gb, assuming ga = gmax. b A slice in the parameter space with a symmetric external
coupling rate κa = κb = κ. The white star represents the point at the maximally flat
parameters. c A slice in the parameter space with the saturated coupling condition
gb = gmax. The white star represents the point at the maximally flat parameters.
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capacities, based upon the above conjectures observed from the
0- and 1-stage cases, we have numerically verified the global
optimality of the maximally flat transducers up to N=5. Our find-
ings suggest a strong numerical evidence that the maximally flat
transducers are highly likely the optimal choices to achieve glob-
ally maximal quantum capacities at any given number of inter-
mediate stage N.

Uniform coupling transducers
Here we discuss the optimized parameters for uniformly coupled
transducers, 8j,~gj = gmax. After numerical optimizing over Δj, κa, and κb
in searchofmaximalQ1 andQ2, wefind thatoptimal designs of uniform
transducers also show features of flatness around the ideal conversion
frequency ωc such that

∂ηUniN ½ω�
∂ω ∣

ω=ωc
= � � � = ∂3ηUni

N ½ω�
∂ω3 ∣

ω=ωc
=0,N even,

∂ηUni
N ½ω�
∂ω ∣

ω=ωc
= � � � = ∂5ηUniN ½ω�

∂ω5 ∣
ω=ωc

=0,N odd:
ð26Þ

The corresponding optimized parameters denoted by tilde are
8j,~Δj = � ωc, ~κa = ~κb =2gmax for even N, and ~κa = ~κb =2

ffiffiffiffiffiffiffiffi
N + 3
N + 1

q
gmax for

oddN. The global optimality of these parameters has been numerically
verified up to N=10 under the symmetric assumption κa = κb and the
resonant condition∀ j,Δj = −ωc.

From Fig. 3, we observe that optimal uniform transducers with
odd N have higher Q1 than those with even N, which may be explained
by the two extra orders of flatness aroundωc and that odd transducers
have stronger coupling rates to the external ports.

Bounds on the discrete-time quantum capacities of thermal-loss
channels
To our knowledge, the tightest lower bound on the discrete-time one-
way thermal-loss quantum channel capacity is38

q1,�n,L½ω�= max log2
η½ω�

1� η½ω�

� 	
� hð�n½ω�Þ,0

� �
, ð27Þ

hðxÞ � ðx + 1Þlog2ðx + 1Þ � xlog2x: ð28Þ

For a N-stage maximally flat transducer, we can find an analytical
expression for its continuous-time thermal-loss quantum capacity
lower bound,

QN,MF
1,�n,L =

4ðN +2Þ
logð2Þ 1 +

1
�n

� ��n

ð1 + �nÞ
" #� 1

2ðN + 2Þ

�gN

≈
4ðN +2Þ
logð2Þ � 2 1� logð�nÞð Þ�n

logð2Þ

� 	
�gN +Oð�n2Þ

≈Qmax � 2
ffiffiffi
3

p
π½1� logð�nÞ�Þ�n
N logð2Þ gmax +Oð 1

N2Þ,

ð29Þ

where we have expanded Q1,�n,L around small thermal-photon number
�n≈0 in the second line, and then further expand the expression around
large N in the last approximation.

On the other hand, there is no single analytical form for the
tightest upper bound on the discrete-time one-way thermal-loss
capacity. Here we combine the three best upper bound formulas
known and define q1,�n,U ½ω� as

q1,�n,U ½ω�= min q1,�n,U,twist½ω�,q1,�n,U,DE½ω�,q2,�n,U ½ω�
� �

: ð30Þ

Here q1,�n,twist is the upper bound attained by a twisted version of a
quantum-limited attenuator and amplifier decomposition of thermal
attenuators54,55,

q1,�n,twist½ω�= max log2
η½ω� � ð1� η½ω�Þ�n½ω�
ð1� η½ω�Þð�n½ω�+ 1Þ

� 	
,0

� �
, ð31Þ

q1,�n,DE is the upper bound given by the degradable extensions of
thermal-loss channels56,

q1,�n,DE½ω�= max log2
η½ω�

1� η½ω� +hðð1� η½ω�Þ�n½ω�Þ � hðη½ω��n½ω�Þ
� 	

,0
� �

,

ð32Þ

and q2,�n,U is the upper bound on the quantum capacity of thermal-loss
channels assisted by two-way classical communication and local
operations40,

q2,�n,U ½ω�= max �log2 ð1� η½ω�Þη½ω��n½ω�� �� hð�n½ω�Þ,0� �
: ð33Þ

These three formulas above give rise to the tightest upper-
bound values in different parameter regimes, and thus we combine
all three of them to achieve the best upper bound formula.

For two-way protocols, the best known discrete time two-way
thermal-loss capacity lower bound is40

q2,�n,L½ω�= max �log2 1� η½ω�½ � � hð�n½ω�Þ,0� �
, ð34Þ

and we calculate the analytical formula for the continuous-time two-
way thermal-loss capacity lower bound of a N-stage maximally flat
transducer as

QMF
2,�n,L =

4ðN +2Þ
logð2Þkð�nÞ 1

2ðN +2Þ
2F1 1,

1
2ðN +2Þ ,1 +

1
2ðN + 2Þ ,�

1
kð�nÞ

� 	
�gN

≈
2π

logð2Þ csc
π

2ðN +2Þ

� 	
� 4ðN +2Þð�n� �n logð�nÞÞ 2N + 3

2ðN + 2Þ

ð2N +3Þ logð2Þ

( )
�gN +Oð�n2Þ

≈Qmax � 2
ffiffiffi
3

p
π½1� logð�nÞ��n
N logð2Þ gmax +Oð 1

N2Þ,

ð35Þ
kðxÞ � ð1 + xÞð1 + x�1Þx � 1: ð36Þ

Fig. 8 | Diagrams for the numerical search of the optimized 0-stage transducer
parameters that can attain the highest possible continuous-time two-way
thermal-loss quantum capacity upper bound with a mean thermal photon
number

--
n=0:1. a Contour plot of the continuous-time two-way thermal-loss

capacity upper bound for N =0, QN =0
2,�n=0:1,U , in the parameter space of κa, κb, and

Δ ≡Δa −Δb. bA slice in the parameter spacewith symmetric external coupling rates
κa = κb = κ. The white star represents the location of the maximally flat parameters.
c A slice in the parameter space under the resonant condition Δ =0. The white star
represents the location of the maximally flat parameters.
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Here 2F1 is the hypergeometric function.
For a maximally flat N-stage transducer, its continuous-time two-

way thermal-loss capacity upper bound associated with q2,�n,U ½ω�40 is

QN,MF
2,�n,U =

4ðN +2Þ
logð2Þ�n 1

2ðN +2Þ
ð�n+ 1Þ2F1 1,

1
2ðN + 2Þ ,1 +

1
2ðN +2Þ ,�

1
�n

� 	
� �n

� �
�gN

≈
2πð1 + �nÞ
logð2Þ csc

π
2ðN +2Þ

� 	
� 8ðN + 2Þ2�n 2N + 3

2ðN + 2Þ

ð2N +3Þ logð2Þ

" #
�gN +Oð�n2Þ

≈Qmax � 2
ffiffiffi
3

p
π½1� logð�nÞ��n
N logð2Þ gmax +Oð 1

N2Þ:

ð37Þ

We have seen numerical evidence showing that maximally flat trans-
ducers are still optimal under the effect of thermal loss. In Figs. 8 and9,
we plot upper and lower bound diagrams for the numerical search of
the optimal 0-stage transducer under thermal loss. Those diagrams
behave qualitatively similar to the pure-loss quantum capacities in
Fig. 6, and the locationof thenumericalmaximumagain coincideswith
the parameters of the 0-stage maximally flat transducer.

Code availability
Source codes of the figures presented in this article are available from
the corresponding author upon request.
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