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Impacts of micromobility on car 
displacement with evidence from a natural 
experiment and geofencing policy

Omar Isaac Asensio    1,2  , Camila Z. Apablaza1, M. Cade Lawson    3, 
Edward W. Chen    4 and Savannah J. Horner5

Micromobility, such as electric scooters and electric bikes—an estimated 
US$300 billion global market by 2030—will accelerate electrification 
efforts and fundamentally change urban mobility patterns. However, the 
impacts of micromobility adoption on traffic congestion and sustainability 
remain unclear. Here we leverage advances in mobile geofencing and 
high-resolution data to study the effects of a policy intervention, which 
unexpectedly banned the use of scooters during evening hours with remote 
shutdown, guaranteeing near perfect compliance. We test theories of habit 
discontinuity to provide statistical identification for whether micromobility 
users substitute scooters for cars. Evidence from a natural experiment in a 
major US city shows increases in travel time of 9–11% for daily commuting 
and 37% for large events. Given the growing popularity of restrictions on the 
use of micromobility devices globally, cities should expect to see trade-offs 
between micromobility restrictions designed to promote public safety and 
increased emissions associated with heightened congestion.

Shared micromobility, such as electric scooters and bikes (e-scooters 
and e-bikes), has rapidly flooded cities, offering cheap and convenient 
first/last-mile solutions for urban visitors in over 100 US metropolitan 
areas1. Shared micromobility is a strategy for progress towards trans-
port electrification and is projected to be a US$300 billion market 
globally by 20302,3. When e-scooters and e-bikes displace internal com-
bustion engine vehicles, life-cycle assessments indicate net reductions 
in associated emissions and environmental impacts4. E-scooters and 
e-bikes are thought to substitute active modes of transport (for exam-
ple, distances 0–5 miles) that include both commuting and recrea-
tional use5,6, but evidence that micromobility adoption can ease traffic 
congestion or provide sustainability benefits through substitution of 
travel modes has been controversial7. Many cities have banned micro-
mobility devices citing personal safety or other concerns, while other 
cities have allowed its proliferation largely without changes in urban 

infrastructure needed for widespread adoption. A fundamental chal-
lenge to learn whether micromobility is a complement or a substitute 
for vehicle choice is largely behavioural.

Causal evidence of the impacts of micromobility on urban sus-
tainability outcomes has, to date, been relatively weak, relying on 
self-reported usage data from survey questionnaires, which is sub-
ject to hypothetical, hindsight or recency bias. Other evidence on 
travel mode choice has typically relied on simulations from smaller 
datasets, which present modelling challenges related to population 
sampling and endogeneity concerns. As a result, behavioural evidence 
on whether micromobility adoption displaces cars has generated con-
tradictory claims. For example, self-reported data from scooter pro-
viders in French cities have produced claims that e-scooter adoption 
decreases 1.2 million car trips in Paris or about 4% of car trips in Lyon8,9. 
By contrast, other studies from Atlanta, San Francisco and Chicago have 
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Experiment, Fig. 1b) against various counterfactuals. Similarly, in 
our event-based mobility experiment (Mercedes-Benz Experiment, 
Fig. 1c), we identify banning policy impacts on travel time on days 
coinciding with large stadium events. Atlanta is an important field 
site for analysis because it is one of the largest adopters of shared 
micromobility, with multiple competing providers already servicing 
over 4 million e-scooter and e-bike trips per year20. Atlanta’s invest-
ments in micromobility ridership are part of a larger trend by cities 
to redesign streets to accommodate micromobility and to promote 
clean transportation alternatives21.

Micromobility mode substitution
What do people do when scooters are not available? There is a rich 
behavioural literature on the conceptualization and importance of 
travel mode choice as a habit22–28. Such theories of behaviour change 
indicate that when habits are disrupted, people reconsider their options 
in the context of their individual attitudes and values. We know from 
Verplanken (2008), who originally coined the habit discontinuity 
hypothesis (for example, habit discontinuity effect), that when con-
sumers face disruptions or unexpected changes, habits associated with 
the context are (at least temporarily) broken, too, and thereby provide 
opportunities for behavioural change24. Context change, induced by 
the micromobility ban, is conceptualized to activate important values 
that guide travel mode decisions. For example, it is well known that 
consumers who are more environmentally conscious often change 
their behaviour in response to interventions by using a personal car less 
frequently24. More generally, there is a substantial emerging literature 
on policy efficacy and habitual travel mode choice in the broader con-
text of climate change and sustainable behaviours25,29. Under this habit 
discontinuity hypothesis, those who hold pro-environmental attitudes 
are more likely to resort to other pro-environmental transit choices 
after the ban is put in place24,25. These behavioural insights motivate 
our hypothesis that if micromobility riders are more environmentally 
conscious, then we predict that they might not revert to personal vehi-
cles or ridesharing following the ban but instead revert to other more 
sustainable modes (for example, biking, walking, rail transit or other 
micromobility). Limited cross-sectional survey evidence from cities 
points in this direction10,11.

We test two opposing mechanisms. If individuals revert to per-
sonal vehicles or ridesharing in lieu of micromobility, then we expect 
to find that the banning policy should increase traffic for both daily 
commuting and special events. However, if individuals choose not to 
revert to personal vehicles or ridesharing and instead choose the more 
pro-environmental option such as public transit or walking, then we 
should expect to find no statistically significant effect on travel time.

The Uber Movement travel time dataset is among the largest and 
most granular transportation datasets, aggregated from over 10 billion 
individual trips18. In our analysis, we leverage 47,477 observations of 
travel time data aggregated daily from passenger vehicle trips taken 
in the greater Atlanta metropolitan statistical area for the 90 days 
surrounding the policy implementation. Our outcome of interest is 
the mean average travel time per mile during evening hours, including 
hours when the ban is active. Our research design allows us to uniquely 
isolate a particular mechanism of micromobility mode substitution 
from scooters to either private cars, taxis or ridesharing, all of which 
are captured in our outcome data and have important implications 
for marginal emissions reductions. However, in this study we do not 
quantify substitution between e-scooter use and travel modes expected 
to have less effect on marginal emissions reductions, such as walking, 
rail transit or other micromobility trips. Additional details about the 
quasi-experimental design and measurement are in Methods.

Estimated urban travel-time effects
We evaluate treatment effects in the urban centre for both recurring 
and event-based mobility. For recurring mobility in the Midtown 

generated cross-sectional survey evidence that e-scooters and shared 
micromobility riders do not always displace cars but often substitute 
for public transit, walking or other forms of micromobility that may not 
necessarily decrease emissions10,11. Further, researchers have estimated 
that emissions may be higher when electric scooters replace other 
transportation modes besides personal vehicles (life-cycle emissions 
estimates of 202 g CO2-equivalent (CO2e) per passenger mile for scoot-
ers versus 414 g CO2e per passenger mile for passenger vehicles)4,12. 
Despite evidence from life-cycle assessments that shared micromo-
bility adoption produces net decreases in carbon emissions, mixed 
behavioural evidence and a lack of reliable data has left the effects 
of micromobility on urban traffic congestion and emissions unclear.

Here we provide evidence that restrictions by cities on e-scooter 
use leads to unexpected trade-offs between measures designed to 
enhance public safety and increased traffic and tailpipe emissions. 
Results from our natural experiment in a major US city reveal conges-
tion effects resulting in a 9–11% increase in urban travel time for recur-
ring evening trips and a 37% increase for large sporting events following 
a micromobility ban during evening hours. We estimate a potential 
national value of lost time of up to US$536 million, which captures 
the opportunity cost of lost time in traffic. We discuss behavioural 
insights for short-run emissions reductions through the substitution 
of e-scooters for cars.

High-resolution mobility data and the No  
Ride Zone
Recent advances in real-time data collection allow us to leverage highly 
granular digital data from mobile platforms to estimate effects about 
travel decisions13–17. First, digital data provide users with instant infor-
mation about travel options and costs using geolocation and Global 
Positioning System (GPS) tracking7. Second, digital platforms provide 
convenient mobile payment at the point of use, simplifying the process 
of deciding between multiple modes of travel. Third, data interoper-
ability across multiple travel modes could allow for more effective 
management of transportation services across jurisdictions. However, 
regional data on micromobility use has been particularly hard for cities, 
policymakers and researchers to access. This is because micromobil-
ity data is proprietary and controlled by private entities with closed 
ecosystems and data restrictions at various levels of aggregation. Here 
we show that when real-time mobility data is more widely available, it is 
possible to evaluate transport policies with stronger causal inference 
as compared to studies using cross-sectional and costly government 
transportation surveys.

In this study, we provide credible evidence of the effects of mass 
e-scooter and e-bike use on traffic congestion. We use high-resolution 
data from Uber Movement to analyse a policy intervention in the city 
of Atlanta in which micromobility devices were banned during evening 
hours from 9:00 p.m.–4:00 a.m. with mobile geofencing and remote 
shutdown, resulting in near perfect compliance18,19. During the hours 
of the ban, micromobility devices from all providers are automati-
cally disabled from mobile apps to create a No Ride Zone. This natural 
experiment provides a plausible identification strategy to discover how 
travellers respond to policy changes when scooters are unavailable 
for last-mile transit. This is important because prior claims about the 
substitution of micromobility with other transit modes have suffered 
from empirical challenges related to the lack of granular travel data, 
unreliability of self-reported information or confounding factors that 
could limit causal interpretations.

To address these empirical challenges, we conduct three 
quasi-experiments to evaluate policy impacts on both recurring mobil-
ity (for example, evening commuting patterns) and event-based mobil-
ity (for example, travel for special events), as depicted in Fig. 1. In our 
recurring mobility experiments, we compare passenger vehicle travel 
time in both the city centre (Midtown Experiment, Fig. 1a) and around 
transit hubs (Metropolitan Atlanta Rapid Transit Authority (MARTA) 
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Experiment, which measures travel-time impacts in the city centre, 
we find evidence of a congestion effect due to the banning policy of 
0.241 (standard error 0.035) minutes per mile (Table 1). For an average 
commute in Fulton County, this translates to an estimated increase 
in evening commute times of 2.3 to 4.2 minutes per trip (between 
373,000 and 679,000 additional hours for Atlanta commuters per 
year). For the typical commuter in Atlanta, this congestion effect due 
to the scooter ban translates to a 9.9% average increase in city travel 
time. Similarly, for the MARTA Experiment, which measures travel 
decisions around transportation hubs and with high levels of scooter 
use for last-mile transit, we find evidence of a congestion effect due 
to the policy ban of 0.255 (s.e. 0.051) minutes per mile. This trans-
lates to an estimated increase in evening commute times of 2.0 to 4.8 
minutes per trip (between 327,000 and 784,000 additional hours for 
Atlanta commuters per year). For a typical commuter in Atlanta, this 
congestion effect due to the scooter ban translates to a 10.5% average 
increase in travel time. With these two different experimental designs, 
we find quantitatively similar congestion estimates for evening trips 
(for example, overlapping 95% confidence intervals). We infer that 
when scooters are not available, a statistically significant substitution 
between micromobility and personal vehicles occurs. For reference, 
based on the estimated US average commute time of 27.6 minutes in 
201930, the results from our natural experiment imply a 17.4% increase 
in travel time nationally.

Similarly, for event-based mobility, we analyse nearby travel times 
pre- and post-policy for days of major sporting events at Mercedes-Benz 
Stadium. The timing of the ban coincided with Major League Soccer 
season. Given the more concentrated travel patterns during sporting 
events, we could expect to find a larger congestion effect from the 
banning policy as compared with our recurring mobility estimates. 
Consistent with this, we find an increase in travel time of 0.886 (s.e. 
0.169) minutes per mile during soccer game days. For example, for a 
suburban resident who lives an average of 13 miles away from the city, 

the ban produces an increase in travel time of 11.9 minutes in returning 
home from the soccer game, a substantial 36.5% increase in travel time.

We note that the congestion effects that we measure extend 
beyond typical sources of congestion including: traffic-influencing 
events (that is, as traffic incidents, work zones and weather), traffic 
demand (that is, fluctuations in normal traffic) and physical highway 
features (that is, traffic control devices and physical bottlenecks)31. 
Although a 2- to 5-minute delay for evening commuting and a 12-minute 
delay for special events could appear to be a minor inconvenience, 
the cost of additional time in traffic quickly adds up when aggregated 
across large commuter populations. In the next section, we quantify 
the potential economic impacts of these delays in dollar terms and 
consider the persistence of this congestion.

To contextualize these impacts, we converted our mean conges-
tion effects to US dollars by using the published Value of Time (VOT) 
multiplier of US$26 h−1 for the city of Atlanta32. This results in an esti-
mated impact for recurring mobility of US$3.5 million to US$10.5 mil-
lion per year (Methods provide additional calculation details). For 
reference, the city revenues in permitting and device fees totalled 
half a million US dollars across 10,500 dispatched devices (the city of 
Atlanta collected US$455,600 in permitting fees as of April 2019)33. 
Although these costs are primarily internalized by commuters, the 
unintended damages are equivalent to approximately eight years of 
the city’s micromobility operating revenues. On a national basis, we 
estimate that such banning policies could potentially be worth up to 
US$536 million in congestion-related costs (Methods).

Behavioural persistence
To understand how these effects might change over time, we estimated 
daily treatment effects for the Midtown Experiment beginning with the 
day after policy implementation. These dynamic effects indicate imme-
diate behavioural modifications in travel mode choice following the 
ban. Figure 2 reveals that a peak congestion effect of up to 0.8 minutes 
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Fig. 1 | Quasi-experimental designs for recurring mobility and event-based 
mobility. Here we show the three quasi-experimental designs used to evaluate 
changes in travel time resulting from the evening micromobility ban in the city of 
Atlanta. Areas where the ban is enforced are shown in grey as the policy zone with 
various counterfactuals as the reference areas. a,b, The counterfactual analyses 
in the Midtown Experiment (a) and MARTA Experiment (b) measure the effects 
of the policy intervention on recurring mobility, such as daily commuting. c, The 
counterfactual analysis in the Mercedes-Benz Experiment measures the effects 
of the policy intervention on event-based mobility, such as sporting events. In a, 
the blue region represents the treatment area of interest in the city centre where 
scooters are available but are banned during evening hours. The colours purple, 

orange and green are used to denote counterfactual regions with and without 
scooter availability, both inside and outside the policy zone. In b, we target 
analysis in blue regions near MARTA subway stations. These are then compared 
with counterfactual MARTA subway stations outside the policy zone, shown in 
orange. In c, we compare travel time before and after the policy from Mercedes-
Benz Stadium, home to Major League Soccer matches and shown in pink, to 
nearby census tracts shown in yellow. The grey outlines represent US census 
tract boundaries. For all three quasi-experimental designs, we find statistically 
significant spillover effects of the policy on traffic congestion. More information 
about the statistical estimators and protocols used are in Methods.
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per mile (about an 11-minute delay for the average driver) occurs within 
the first five days of the policy change. We provide detailed point esti-
mates for the daily treatment effects for the Midtown and MARTA 
experiments in Supplementary Table 1 and Supplementary Table 2, 
respectively. The immediate congestion that we observe is the result 
of the inability by riders to anticipate the ban or plan effective travel 
alternatives that do not also increase traffic during the first few days. 
We note that micromobility mode substitution such as cars or rideshare 
has an additive treatment effect, whereas mode substitution such as 
walking or public transit has a subtractive or negligible treatment effect, 
which does influence measurement. We find that after about a week, 
users partially account for the policy change in their travel planning 
and habits. This behavioural response suggests that as riders pivoted 
from micromobility devices back to personal cars or ridesharing, the 
congestion effect following the ban stabilizes to a mean treatment 
effect of 0.25 minutes per mile after five weeks.

Some may wonder why the effect of the ban initially tapers off 
before stabilizing to our final reported estimate. We acknowledge 
that it is not possible to fully characterize this phenomenon without 
more inductive or qualitative methods. However, in terms of possible 
mechanisms, we believe that after experimenting with other micromo-
bility substitutes (for example, walking, rail, bus or other micromobil-
ity), riders gradually settle on their preferred alternative after two to 
three weeks of experimentation at which time the effect reappears and 
stabilizes using multiple methods and approaches. This behaviour is 
consistent with the habit discontinuity hypothesis that micromobility 
riders disrupt mobility patterns but do not necessarily revert to other 
sustainability-enhancing travel modes. We have some suggestive sur-
vey evidence for this mode settling. According to the Atlanta e-scooter 
survey, 42% of scooter users self-report that they would have made their 
trips by using a personal vehicle/rideshare had a scooter not been avail-
able11. Although a full investigation of behavioural persistence beyond 
the 90-day period is out of scope in this study, we note that longer-term 
monitoring of the policy implementation becomes more difficult to 
justify as a source of exogenous variation. In future research, we sug-
gest further study into scooter use volumes and mechanisms of mode 
substitution to better understand the relationship between short-run 
behavioural modification and long-run habit formation for micromo-
bility use. Given that these types of policy interventions are becoming 
more prevalent, it will be critical for decisionmakers to weigh the relative 
priorities between public safety and traffic congestion, which is already 
estimated to cost up to US$166 billion annually in the United States34.

Critics of micromobility solutions point to the fact that scoot-
ers may not displace cars and hence do not achieve sustainability 

co-benefits12. Contrary to this view, we find that commuters revert 
to car-based travel (for example, personal vehicles, ride sharing or 
ride hailing) once micromobility devices are not available, resulting 
in statistically significant increases in travel time not intended by the 
original policy. These findings are consistent with other studies in 
Seattle and Beijing, for example, which suggest that micromobility 
rides can replace up to 18% of short car trips in congested corridors or 
mitigate traffic around subway stations by up to 4%, respectively35,36. We 
find that the dominant behavioural response by riders is to substitute 
micromobility with cars. Although we do not observe micromobility 
trips directly, 52% of surveyed micromobility users in Atlanta reported 
that they used a scooter from least a few times per month to several 
times per week during the period of our study11. Our results also indicate 
that micromobility users were largely not driven by environmental con-
siderations in their travel mode choice following the safety regulation. 
This is important because as the micromobility user base is growing 
and consumer preferences are shifting towards longer e-scooter trip 
distances3, micromobility adoption presents increased opportunities 
to achieve emissions reductions from a broader set of consumers who 
are not necessarily environmentally conscious.

The results of this policy experiment affirm the importance of 
technology-based advances in mobile geofencing as a strategy to 
increase behavioural compliance. Observing near perfect behavioural 
compliance in response to environmental or safety regulations has 
been rare. These technology-based advances are helpful for policy 
analysis and impact evaluation but also raise challenges related to data 
access and governance. The availability of digital data streams can allow 
governments and policymakers to address gaps in service provision 
for urban mobility, but private platforms have little incentive to share 
proprietary data with decisionmakers. Several global organizations, 
such as the United Nations’s Economic and Social Council and World 
Data Forum, have called for governance mechanisms and partner-
ships to support the implementation of disaggregated, high-quality 
open data for sustainable development37. For example, bike-sharing 
platforms have similarly been shown to reduce car trips in the United 
States, Great Britain and Australia38. Despite these national and inter-
national efforts, many practical challenges remain, and we suggest the 
following local and regional policies with respect to micromobility data 
infrastructure. On the basis of our discussion with city officials and data 
providers, disclosure policies should need to be developed so that city 
partners have a process for anonymizing and aggregating records that 
are granular enough for a wide range of analyses, while ensuring privacy 
protections for personal data from re-identification. For example, the 
Uber Movement makes data available at granular enough intervals to 

Table 1 | Estimated travel-time increases

I II III IV V

Mean congestion effect (min per mile) [Lower 95% CI, upper 
95% CI] (min per mile)

Percent increase 
in travel time †

[Travel-time 
increases (min)] †

Difference-in-Differences/ 
Fixed Effects

Triple differences

Recurring mobility

  Midtown Experiment‡ 0.201*** (0.025) 0.241*** (0.035) [0.171, 0.311]. 9.94% [2.29, 4.17]

  MARTA Experiment 0.255*** (0.051) - [0.150, 0.359] 10.50% [2.01, 4.82]

-

Event-based mobility

  Mercedes-Benz Experiment§ 0.886*** (0.169) - [0.554, 1.218] 36.54% [7.43, 16.32]

-

Significant at the level P < *0.1, **0.05, ***0.01. Standard errors are clustered at the origin tract level. †For this calculation, we use the average commute distance of 13.4 miles for Fulton County 
published by the Atlanta Regional Commission48. ‡The upper and lower 95% confidence intervals (CI) in Column III and the range of travel-time increases in Column V are based on the 
triple-differences estimator. §This estimate is based on a fixed effects estimator.
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be applicable for time series analysis while also protecting the privacy 
of Uber users. Second, ensuring continuity and consistency in archival 
data access will be necessary, particularly when smaller data owners 
exit the market or services are otherwise interrupted. This could be 
considered through the issuance of licences to operate micromobility 
devices. Third, data standards are needed at a regional scale to enable 
interoperability at different levels of aggregation and time periods. 
The Uber Movement data releases provide a promising path forward.

Conclusions
Decisions that shape our cities can lead to unexpected effects. We have 
established that when scooters and e-bikes are banned, drivers experi-
ence statistically significant increases in traffic congestion as many riders 
revert back to passenger vehicles for last-mile transit. Due to the precise 
nature of the intervention, we observe effects that are greatest in the 
first few days after the micromobility ban but show durability for many 
subsequent weeks. The persistence of these effects may compound the 
economic costs of increased traffic congestion, which we estimate can 
be worth up to US$536 million globally (Methods). It remains unclear 
whether greater public awareness of these unintended congestion effects 
could shift public pressure on micromobility bans. Metropolitan areas 
around the world such as Singapore, Montreal and West Hollywood have 
instituted bans and other restrictions on shared micromobility, which 
risks further economic costs of increased commuter travel times. To 
accelerate the adoption of micromobility and achieve its associated 
sustainability benefits, we argue that cities will need to make additional 
investments in both physical and digital infrastructure. For physical 
infrastructure, land use and space allocation will require longer-term 
planning such as converting lanes usually reserved for cars into bike 
lanes that can be used for micromobility. If further micromobility adop-
tion happens at the expense of ‘pollutingʼ modes like private vehicles 
or other car-based travel, then these investments become even more 
critical for urban sustainability and will carry larger policy implications. 
We are already seeing evidence of this in large cities such as Milan, Brus-
sels, Seattle and Montreal3 and mid-sized cities such as Raleigh, NC, 
Alexandria, VA, and Tucson, AZ10. With its potential to displace cars for 
personal travel and drive short-run emissions reductions, micromobility 
is poised to continue its strong growth as an urban mobility solution.

Methods
Geofencing policy
The micromobility ban was implemented in the city of Atlanta on 9 
August 2019. We use high-resolution data from 25 June 2019 to 22 

September 2019 from Uber Movement to measure changes in evening 
travel times between 7:00 p.m. and midnight, pre- and post-policy 
implementation. This allows for a window of analysis of 45 days pre- and 
post-policy implementation (Supplementary Fig. 1). We designed three 
quasi-experiments to evaluate both recurring mobility (for example, 
daily community patterns) and event-based mobility (for example, 
travel for special events). The policy zone covers a total land area of 
136.8 square miles (354.3 square km) as shown in Fig. 1. Unlike other 
interventions such as fines or usage rules that might discourage but do 
not eliminate scooter riding, we are able to observe treatment effects 
with near perfect compliance. This is because the mobile apps digitally 
shut off access to all devices during non-operating hours automatically 
between 9:00 p.m. and 4:00 a.m. with mobile geofencing.

The travel time data, as provided by Uber Movement, are derived 
from anonymized and aggregated trip location data that are spatially 
resolved to the nearest census tract. We downloaded intra-day travel 
times at the highest resolution available that includes the start of the 
ban, which Uber defines as between 7 p.m. and midnight. Thus, we 
analysed evening peak hour congestion impacts before and after the 
policy, where there is a time overlapping of peak hours and policy 
implementation hours that could be leveraged for the analysis. Because 
the travel distance for every tract may differ, we normalized the travel 
time data by the distance between origin and destination tracts. This 
allows for direct comparisons between trips to different parts of the 
city. The dependent variable for analysis in the Midtown and MARTA 
experiments is therefore the daily evening travel time per mile (Supple-
mentary Table 3 provides descriptive statistics). In the Mercedes-Benz 
Experiment, we normalize the travel time per mile by the number of 
attendees to each event during July and August. In this way, we mitigate 
the possibility that during post-ban dates there could be more people 
at the stadium than before.

The independent variables include location-based statistical con-
trols such as census tract characteristics, proxy variables for number 
of transit alternatives and measures for common time trends that 
could impact travel times including daily precipitation and time dum-
mies. The census tract characteristics are variables that impact traffic 
congestion in the area include the number of vehicles owned per tract, 
which measures residential density. Because the ban was implemented 
coincident with the academic school year, we include school enrolment 
per tract as a control for differential impacts on traffic due to school 
size. The transit alternative variables impact travel mode choices made 
by commuters and include the number of transit routes, Walk Score and 
number of bike-share hubs. We also considered other transit alternative 
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Fig. 2 | Dynamic treatment effects in the city centre. Dynamic treatment 
effects are estimated daily following the policy intervention. a,b, We report 
estimates from the Midtown Experiment (a) and the MARTA experiment (b), each 
beginning with the day after the policy implementation. We report an effect each 
day beginning the day after the policy implementation, 10 August 2019 through 

22 September 2019. The upper and lower 95% confidence intervals are shown by 
the shaded regions above. We find that peak congestion effects occur within the 
first week following the policy implementation for both the Midtown and MARTA 
experiments, likely reflecting a temporary reversion to travel in personal vehicles 
as commuters adjust to the micromobility ban.
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variables such as the Transit Score, but these could not be used in the 
analysis due to high correlation with other features. Because travel 
patterns may differ during rainy weather, we include a dummy vari-
able for daily precipitation during the evening. To merge precipitation 
data with the tract-level observations, we found the nearest weather 
station to each tract using published data from the National Oceanic 
and Atmospheric Administration39. It is possible that there could be 
different congestion effects on weekdays and weekends. Addition-
ally, general traffic congestion could increase during the summer 
months such as mass gatherings during summer events. To capture 
this and other unobserved time-varying factors, we include monthly 
and day-of-the-week dummies. We include descriptive statistics by 
area in Supplementary Table 4 and provide additional descriptors for 
our variables in Supplementary Table 5.

Experimental design
To analyse the effects of the policy intervention, we implemented vari-
ous counterfactuals chosen carefully to mitigate the observable bias 
between treatment and control areas. For example, in the Midtown 
Experiment, Cumberland areas were chosen as counterfactual because 
of statistically similar observable characteristics including median age, 
median income, race distribution and education level. Other counter-
factuals that we tested include Sandy Springs and Buckhead (Fig. 1a). 
Although these are similar in socio-economic characteristics, we did 
find statistically significant differences in vehicle ownership between 
counterfactual areas as measured in the American Community Survey 
provided by the US Census40. For this reason, we included vehicle den-
sity per tract as described above. In the MARTA Experiment, subway 
stations outside the policy zone and within the same train system were 
chosen as a counterfactual because of similarities on transit services 
and amenities provided to commuters (Fig. 1b). For example, banks, 
pharmacies, hospitals and gyms are all typically within ten minutes or 
less walking distance from a station and a common set of intermodal 
transit alternatives. In the Mercedes-Benz Experiment, we study travel 
time per mile from the Mercedes-Benz Stadium to destination tracts 
in nearby areas permitted for scooter use (Fig. 1c).

For the econometric analyses in the Midtown experiment, we 
implement a difference-in-differences estimator that compares 
mean travel time per mile for the policy zone and counterfactual pre- 
and post-policy. To provide more robust quantitative estimates, we 
also implement a triple-differences (DDD) estimator with second-
ary counterfactuals, as DDD models can reduce bias relative to a 
difference-in-differences approach, especially in the presence of any 
omitted variables41. The unit of analysis is at the tract level. Each mean 
travel time per mile, Y, is calculated for a given time period and area of 
the city. Equation (1) describes the DDD estimator.

DDD = ((YP_Spost − YP_Spre) − (YNP_Spost − YNP_Spre))

− ((YP_NSpost − YP_NSpre) − (YNP_NSpost − YNP_NSpre))
(1)

To designate the policy zone, P represents the areas affected by 
the policy ban and NP represents the area not affected by the ban. To 
designate scooter service areas, S represents areas where micromobil-
ity services are available and NS represents areas where micromobility 
services are not available. Given the unexpected nature of the policy 
ban and its timing, our identification strategy allows us to estimate 
treatment effects during evening hours. We are not able to estimate 
congestion effects during other hours of the day.

To validate the assumptions of our statistical estimators, we pre-
sent parallel time trends pre-policy in Supplementary Fig. 1. We note 
that for the triple-differences design in the Midtown Experiment, the 
secondary counterfactuals in Sandy Springs and Buckhead tracts are 
generally parallel but do not strictly need to be to achieve statistical 
identification with triple differences41,42. We also included several 
additional control variables that could also impact travel time per 

mile. For example, we included dummies for the existence of large 
co-events (for example, State Farm Arena, Truist Park, Music Midtown, 
large concerts and so on) in our Midtown and MARTA experiments and 
included additional time dummies (such as weekly) as covariates in the 
regression models to mitigate other time variability.

Seasonal variation in travel-demand patterns
Prior studies have established that there could be seasonal variabil-
ity in travel patterns, particularly during the summer months, that 
could affect the uncertainty in our impact estimates43,44. It is well 
known that day-to-day travel behaviour can experience higher vari-
ability when using trip-based methods as compared to time budget 
methods45. Specifically, Elango et al. (2014) find that households with 
children in Atlanta exhibit high-travel-demand variability during the 
summer. To address the role of high-travel variability households, we 
performed a series of additional robustness checks for both our Mid-
town and MARTA experiments. To mitigate the effect of high-variability 
households, we tested an additional control variable in model speci-
fications using school enrolment as a proxy for households with chil-
dren. We found quantitatively negligible differences with either a 
difference-in-differences estimator or triple-differences (DDD) estima-
tor (Supplementary Table 6). Our estimates are robust to one-way and 
two-way clustering46 (Supplementary Table 7), inclusion of additional 
controls related to travel-demand variability including school enrol-
ment and large event indicators. On the basis of this evidence, we 
reasonably conclude that high variability due to seasonality is not a 
major driver in the uncertainty of our estimates.

Placebo tests
Scholars have established that the standard deviation of a travel time 
per unit distance often has a linear relationship with its corresponding 
mean value47. Given the higher average travel time in treatment tracts 
versus counterfactual tracts, it is possible that our effects could be 
influenced by this difference in variability. To ensure the robustness 
of our results to any differences in tract variability, we implemented 
placebo tests in two ways. First, we replicated our data collection pro-
cess to gather out-of-sample travel time data for 12 months before 
our natural experiment, using a similar date range as used in our main 
analysis. This gave us a total of 20,189 travel-time observations across 
the same 40 census tracts used in the main analysis for placebo tests. 
As expected, we recovered treatment effects not statistically different 
from zero with the same treatment and counterfactual tracts. These 
results, shown in Supplementary Table 8, are also robust to various 
one-way and two-way clustering options. Thus, we conclude that differ-
ences in tract variability are unlikely to artificially drive our estimates.

Second, we also conducted placebo tests with all in-sample data 
before the ban by testing for treatment effects two weeks before the 
actual policy intervention in the MARTA and Midtown experiments. 
As expected, these placebo tests revealed treatment effects that were 
not statistically different from zero. These additional analyses are 
presented in Supplementary Table 9.

Estimated travel-time increase
To calculate the estimated increase in travel time for a typical commute 
in the city of Atlanta, we multiply the mean congestion effect from our 
experiments by the average distance of a typical commute in the city. 
The Atlanta Regional Commission estimates that, on average, a resident 
of Fulton County drives 13.4 miles to work each way48.

Calculating economic damages from increased congestion
To calculate the economic damages from increased congestion, we used 
the published Value of Time (VOT) estimates for the city of Atlanta, which 
is US$26 per hour spent in traffic in the evening32. This value allows us to 
generate more conservative estimates of economic damage than if we 
were to use the US$36 VOT estimate for morning trips. To get the total 
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number of trips, we referenced the number of daily commutes in Fulton 
County and share of evening commutes (approximately 11%) to get a 
more precise estimate49,50. For example, for the Midtown Experiment, 
the estimated congestion effect of 0.241 minutes per mile is multiplied 
by the average commute distance of 13.4 miles, which results in a value 
of 3.23 minutes per trip. To get the economic impact, we convert from 
minutes to hours and multiply this figure by the VOT of US$26, which 
gives an impact of US$1.40 per trip. The derived economic impact in this 
example is US$4.9 million per year. The ranges that we report in the paper 
of US$3.5 million to US$10.5 million reflect the congestion effects from 
the upper confidence interval of the MARTA experiment and lower 95% 
confidence interval of the Midtown Experiment. These estimates reflect 
only the direct effects of the VOT and do not include other indirect effects.

National value of time lost
We estimated the potential value of lost time in traffic at the national 
level in two ways. In the first approach, we used our lower bound on the 
aggregate time lost by Atlanta drivers from the MARTA experiment of 
327,000 hours and the VOT estimate of US$26 from the city of Atlanta 
and then scaled to a per capita value of US$17.41. We then multiplied 
this value by the US population to arrive at an aggregate loss value of 
US$5.73 billion. To generate a conservative estimate, we assume that 
only 10% of the US population experiences the increase in traffic con-
gestion due to a micromobility ban for a final value of US$573 million. 
Additionally, we calculated an estimate using an approach that assumes 
the ban is experienced by all individuals living in an urban centre in the 
United States, or 71.2% of the population, to calculate an upper limit 
on the potential national value of lost time. Under this assumption, 
our estimate for national value of lost time rises to US$4.08 billion.

In the second approach, we started with our estimate of potential 
economic loss in the city of Atlanta (US$10.5 million) and generate a per 
capita value based on the population of Atlanta of US$22. We then scale 
this to the US population living in urban centres, once again assuming 
that 10% of the population is impacted by the ban, to arrive at a national 
estimate of US$536 million.

COVID-19 impact statement
Although there have been substantial impacts of COVID-19 on travel 
patterns, the results derived in this study are not affected by the pan-
demic response because the time period analysed in the study occurs 
at least six months before the restrictions implemented in the city.

Data availability
The datasets generated and/or analysed during the current study 
are available in the Zenodo repository, https://doi.org/10.5281/
zenodo.4924424. Spatial and neighbourhood features are downloaded 
from AllTransit, Walk Score, the Census American Community Survey 
and the National Oceanic and Atmospheric Administration’s National 
Center for Environmental Information. The raw travel time data for 
the city of Atlanta are publicly available from Uber Movement, 2022 
Uber Technologies, Inc., at http://movement.uber.com. Source data 
are provided with this paper.

Code availability
To support scientific replication, all computer code used to gener-
ate the study’s main findings are available in the Zenodo repository,  
https://doi.org/10.5281/zenodo.4924424.
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