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A comprehensive transcriptomic comparison of
hepatocyte model systems improves selection
of models for experimental use
Arif Ibrahim Ardisasmita 1,2,3,9, Imre F. Schene 1,2,3,9, Indi P. Joore1,2,3,10, Gautam Kok1,2,3,10,

Delilah Hendriks4, Benedetta Artegiani5, Michal Mokry 1,6,7, Edward E. S. Nieuwenhuis1,8 &

Sabine A. Fuchs 2,3✉

The myriad of available hepatocyte in vitro models provides researchers the possibility to

select hepatocyte-like cells (HLCs) for specific research goals. However, direct comparison of

hepatocyte models is currently challenging. We systematically searched the literature and

compared different HLCs, but reported functions were limited to a small subset of hepatic

functions. To enable a more comprehensive comparison, we developed an algorithm to

compare transcriptomic data across studies that tested HLCs derived from hepatocytes,

biliary cells, fibroblasts, and pluripotent stem cells, alongside primary human hepatocytes

(PHHs). This revealed that no HLC covered the complete hepatic transcriptome, highlighting

the importance of HLC selection. HLCs derived from hepatocytes had the highest tran-

scriptional resemblance to PHHs regardless of the protocol, whereas the quality of fibroblasts

and PSC derived HLCs varied depending on the protocol used. Finally, we developed and

validated a web application (HLCompR) enabling comparison for specific pathways and

addition of new HLCs. In conclusion, our comprehensive transcriptomic comparison of HLCs

allows selection of HLCs for specific research questions and can guide improvements in

culturing conditions.
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To accurately study human liver physiology and pathology,
in vitro models should faithfully replicate in vivo liver
functions. These include elimination of toxins, production

and secretion of plasma proteins and bile, and metabolic home-
ostasis of carbohydrates, amino acids, and lipids. Most of these
processes are performed by hepatocytes, epithelial cells that
constitute 60% of the number of cells and 80% of the volume of
the liver1. As such, the pursuit of in vitro models that possess
robust hepatocyte functionality remains a major goal of
biotechnology.

Freshly isolated primary human hepatocytes (PHHs) represent
the gold standard to investigate liver functions. However, stan-
dard two-dimensional PHH cultures are difficult to expand and
rapidly lose hepatic functions2. To overcome these limitations,
many groups have attempted to improve long-term PHH cul-
turing methods, stimulating proliferation or minimizing
dedifferentiation3–7. Additionally, hepatic in vitro models were
established from other cell sources, including fetal hepatocytes,
intrahepatic cholangiocytes, pluripotent stem cells, fibroblasts,
urinary cells, and mesenchymal stem cells4,8–56. We here collec-
tively designate these models ‘hepatocyte-like cells’ (HLCs).

The hepatic phenotype is likely to differ between different
HLCs, depending on the cell of origin and culturing protocols.
Clarifying these differences and identifying the best performing
model is required to select the appropriate HLC model to study a
specific biological or clinical question. In this study, we set out to
compare hepatocyte functionality between the final stage of each
HLC protocol. A systematic search of the literature and analysis
of reported functional assays and expression of individual genes
of the different HLCs did not allow thorough comparison of the
hepatic phenotype between studies. Therefore, we developed a
computational algorithm for comparison of whole transcriptome
sequencing (RNA-seq) data across different studies and a web
application to add additional HLC datasets in the future
(HLCompR, https://github.com/iardisasmita/HLCompR). This
resource will guide selection of HLCs tailored to a specific
research aim and help to improve HLC culturing protocols.

Results
Reported hepatocyte functions are insufficient for HLC com-
parison. We searched the literature for articles that described
HLC culture protocols and characterized hepatic functions. As
cross-study comparison of HLCs requires a universal standard,
we only considered studies that tested HLCs alongside PHHs.
This strategy yielded 53 studies describing HLCs derived from
pluripotent stem cells (PSCs), fibroblasts, mesenchymal stem
cells, urinary cells, intrahepatic cholangiocytes, and PHHs (Fig. 1a
and Supplementary Fig. 1). For our quantitative comparison, we
considered hepatic functional assays that were performed in more
than 10 studies, the expression of associated genes, and genes
commonly used as hepatic markers (Supplementary Data 1).

Some functions, including albumin secretion and CYP3A4
activity were assessed in most (>50%) studies, while other
important liver functions, including bile secretion, cholesterol
metabolism, and gluconeogenesis were generally left unaddressed
(Fig. 1a and Supplementary Data 1). Moreover, many studies did
not include PHHs in all functional assays. Similarly, only the
RNA expression of ALB, CYP3A4, CYP1A2, and CYP2C9 were
reported in the majority (>50%) of studies while other important
hepatic markers were lacking.

For cross-study comparison of liver functionality we consid-
ered functional activity of HLCs, calculated as a percentage of the
PHH control included in the same study (Fig. 1a). Using this
method, different hepatic functions seemed to evolve indepen-
dently from each other. For example, high albumin secretion

correlated with high CYP3A4 activity in PSC-derived HLCs of
Wang et al.46, but not in PSC-derived HLCs of Boon et al.30. This
suggests that it is impossible to predict overall hepatocyte
maturation using only a single hepatic function.

Importantly, different studies did not specify the culture time
of PHH controls. This may have caused significant variability in
control PHH functionality, as specific hepatic functions, includ-
ing CYP3A4 activity, are rapidly lost during PHH culturing12,57

(Fig. 1b). As such, minor variations in culture duration and assay
procedures of control PHHs may have profound effects on the
relative activity of liver functions in HLCs.

Together, the frequent omission of PHH controls, the narrow
range of functional assays performed, and the possible variability
of PHH controls made it impossible to compare the hepatic
phenotype between HLCs based on reported assays.

Transcriptomic comparison reveals distinct liver-specific
molecular signatures in HLCs. To allow transcriptome-wide
and standardized comparison of HLCs, we developed a compu-
tational algorithm to analyze raw bulk RNA-seq data from dif-
ferent HLC studies, that included PHHs or liver tissue as
universal controls (Fig. 2a). This yielded 11 studies describing
HLCs derived from hepatocytes, intrahepatic cholangiocytes,
fibroblasts, and PSCs (Fig. 2b and Supplementary Data 2). In
addition, protocols developed by Huch et al.17 and Hu et al.4 are
commonly used in our laboratory and elsewhere to generate
intrahepatic cholangiocyte-derived organoids and (fetal)
hepatocyte-derived organoids, respectively. Since both studies did
not provide bulk RNA-seq data, we generated RNA-seq data of
HLCs derived from intrahepatic cholangiocytes (Huch-Chol-
HLCs) and fetal hepatocytes (Hu-FHep-HLCs) using the corre-
sponding protocols4,17,58. We did not include the adult
hepatocyte-derived organoids because we were not able to culture
them over long periods of time and, to the best of our knowledge,
nor were other groups58,59. The protocols used to generate the
different HLCs are represented in Supplementary Fig. 2. In
addition to the HLCs and their respective PHH controls, we
included fetal hepatocytes, PSCs, fibroblasts, hepatoma cell line
HepG2, and common bile-duct tissue (CBD60, i.e., extrahepatic
cholangiocytes; Supplementary Data 2).

Principal component analysis (PCA) showed that samples
clustered by cell type rather than by study, confirming that our
computational approach allows cross-study comparison (Fig. 2c).
This also confirmed transcriptional homogeneity of PHH/liver
samples from different studies, which can collectively serve as a
common hepatic benchmark. Most HLCs clustered closely to
their respective cells of origin, with hepatocyte-derived HLCs
(Hep-HLCs) clustering most closely to PHHs and liver tissue
(Fig. 2c). Fibroblast-derived HLCs (Fib-HLCs) from Xie and Du
clustered strikingly close to Hep-HLCs, while Fib-HLCs from Gao
grouped closer to fibroblasts. Du and Gao used similar media
compositions but different transcription factors (TFs) for
transdifferentiation (Fig. 2b), showing better hepatic reprogram-
ming using the TF combination of Du. The protocols differ-
entiating intrahepatic cholangiocytes towards hepatocytes (Chol-
HLCs) resulted in HLCs that clustered with CBDs. Interestingly,
the PSC-derived HLCs (PSC-HLCs) from Mun, which underwent
a final maturation step according to the intrahepatic cholangio-
cyte culture protocol of Huch et al.17,24 (Supplementary Fig. 3),
also clustered closer to CBDs than to either PSCs or PHHs. This
suggests that the culture protocol of Huch et al.17 directs
differentiation towards cholangiocytes rather than hepatocytes.
Considering other PSC-derived HLCs (PSC-HLCS), we observed
that the HLCs from Wang, which were derived from PSCs with
the ability to form extra-embryonic tissues61, clustered closer the
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Hep-HLCs than the HLCs derived from standard PSCs (Gao,
Mun, Boon, Koui; Fig. 2c).

We established a general hepatic fingerprint, by considering the
top-expressed genes in the liver from the Genotype-Tissue
Expression (GTEx) database. Hierarchical clustering showed that
only Hep-HLCs clustered with PHHs and liver tissue based on

these top-expressed liver genes (Fig. 2d). To quantify the overall
resemblance of HLCs to PHHs according to a given gene set, we
calculated distance-based similarity scores (DBS) (Fig. 2e). Hep-
HLCs showed the highest DBS based on top-expressed liver
genes, followed by Wang-PSC-HLCs, Fib-HLCs, other PSC-
HLCs, and finally Chol-HLCs (Fig. 2e).
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Next, we considered several gene sets related to specific hepatic
functions. HLCs derived from hepatocytes, fibroblasts from Xie,
and extended PSCs from Wang were generally most similar to
PHHs, but clear differences could be observed when considering
particular gene sets (Fig. 2f and Supplementary Figs. 4 and 5). For
example, expression of most gene sets was higher in Hep-HLCs
than in Fib-HLCs, except for the gluconeogenesis gene set.
Among all Hep-HLC samples, Xiang-Hep-HLC-D15 was gen-
erally most similar to PHHs and liver tissue (Fig. 2f), which may
result from the relatively short culture time (15 days) of this HLC
sample compared to other HLCs (>3 weeks)3,5,6. We also
observed that Chol-HLCs remained highly similar to CBDs in
overall gene expression (Fig. 2c), with a slight increase in
expression of genes involved in cholesterol metabolism and bile
secretion (Fig. 2f). In HepG2 cells, specific gene sets including
cholesterol and glycogen metabolism and complement produc-
tion were relatively well expressed.

We then evaluated whether the expression of gene sets related
to specific liver functions reflected differences in zonation
between HLCs. To this end, we extracted periportal and
pericentral gene modules from the single-cell analysis of human
hepatocytes performed by Aizarani and colleagues62. To ensure
that these modules assessed hepatic specific genes associated with
hepatocyte zonation, we only included zonation genes that were
enriched (>2-fold) in PHH/liver samples compared to other HLC
cell sources (Fib, PSC, Chol) (Supplementary Fig. 6). This
approach revealed that most HLCs expressed periportal and
pericentral modules in a linear manner (Fig. 2g). This may
suggest that either there are no strong zonation patterns in most
HLCs (assuming homogenous gene expression profiles in all cells)
or there are zonation patterns that cannot be discerned due to the
nature of bulk sequencing analysis. Single-cell RNA sequencing
analysis is needed to fully address zonation in HLCs. Interest-
ingly, Chol-HLCs and HepG2 cells deviated most from this
general linear pattern. Chol-HLCs displayed a predominant
periportal identity (Fig. 2g) which corresponded to relatively high
expression of gluconeogenic genes (Fig. 2f). In contrast, HepG2
cells exhibited a more pericentral identity (Fig. 2g), corresponding
to higher expression of genes involved in cholesterol
metabolism63 (Fig. 2f).

By considering HLCs from all available studies, our approach
also revealed the relative magnitude of hepatic differences
between HLCs generated using various protocols within indivi-
dual studies. For instance, the HLCs in the study of Gao were
either directly transdifferentiated from fibroblasts (Fib-HLCs) or
generated through an intermediate iPSC step (PSC-HLCs). Gao
et al.12 observed that their Fib-HLCs performed better at Phase I
and II reactions, whereas their PSC-HLCs modeled hepatic fatty
acid metabolism better. Our analysis confirmed these findings
(Fig. 2f and Supplementary Figs. 4e and 5a) but also demon-
strated that both the Fib-HLCs and PSC-HLCs from the Gao
study displayed relatively weak hepatic phenotypes compared to
HLCs from other studies. Furthermore, Boon et al.30 attempted to
enhance the maturation of PSC-derived HLCs with TF transduc-
tion (HNF1A, FOXA3, PROX1) and showed that this approach

resulted in higher albumin secretion and CYP3A4 activity.
However, in relation to other HLCs, TF transduction only
resulted in a slight improvement of hepatocyte differentiation
(Fig. 2c, f, g). Moreover, TF transduction not only increased (e.g.,
ALB and HPX) but also decreased (e.g., APOA2 and TTR) the
expression of some specific liver markers in the PSC-HLCs of
Boon et al.30 (Fig. 2d).

HLCs display different cell/tissue identities. The quality of
hepatocyte in vitro models should not only be defined by the
presence of hepatocyte identity (Fig. 2) but also by the absence of
unwanted cell/tissue identities. We therefore analyzed the HLCs
using CellNet64,65, a platform that quantifies resemblance to a
larger variety of human cell and tissue types (cell/tissue classifi-
cation score) based on establishment of tissue-specific gene reg-
ulatory networks (GRN status).

CellNet classified most HLCs as liver but only the (fetal)
hepatocyte-derived HLCs attained a pure liver classification. The
HLCs derived from PSCs, fibroblasts, and cholangiocytes were
either classified as multiple cell/tissue types or non-liver tissues
(Fig. 3a). The unwanted cell identities of these HLCs can be
attributed to incomplete loss of their original cell identity or
undesired gain of non-liver identity.

The incomplete loss of original cell identity could be observed
in all PSC-HLCs, which showed a higher embryonic/pluripotent
stem cell (ESC) GRN status compared to PHHs (Fig. 3b and
Supplementary Fig. 7). Interestingly, despite retaining discernible
ESC GRN status, the PSC HLCs from Wang displayed similar
liver GRN status to Hep-HLCs (Fig. 3b). For Fib-HLCs, only the
samples from Gao failed to fully extinguish their fibroblast GRN
status (Fig. 3b and Supplementary Fig. 7). This incomplete loss of
fibroblast GRN and partial gain of liver GRN in Fib-HLCs from
Gao resulted in low classification scores for all specific cell/tissue
types (Fig. 3a). This heterogeneity in cell identity between HLCs
starting from the same cell source (Wang-PSC-HLCs vs. other
PSC-HLCs and Gao-Fib-HLCs vs. other Fib-HLCs) reflects the
effects of different culture protocols applied in each study.

All non-hepatocyte-derived HLCs manifested undesired gain
of intestine/colon identity (Fig. 3a). Additionally, PSC-HLCs
from Koui also gained lung identity possibly due to their protocol
involving differentiation towards multiple lineages (Fig. 3a and
Supplementary Fig. 2). This gain of non-liver identity may occur
in all cells or only in a subpopulation of cells, resulting from
heterogeneous differentiation. Regardless, this suggests that all
HLC generation protocols are still imperfect and fine-tuning the
cell fate specification of these HLCs may improve hepatic (trans-)
differentiation66. Surprisingly, the Chol-HLCs from Huch and
Schneeberger and PSC-HLCs from Mun bore higher resemblance
to the intestine/colon than to the liver (Fig. 3a). Furthermore, our
CBD control samples had lower intestine/colon classification than
the Huch protocol-cultured HLCs (Fig. 3a). Nevertheless, PCA-
analysis showed that the Huch protocol-cultured HLCs were
more similar to CBD than to intestine/colon samples (Supple-
mentary Fig. 3b), suggesting that the Huch protocol not only
promotes CBD but also intestinal gene expression. This is in line

Fig. 1 Reported hepatic functional assays and gene expression are insufficient for HLC comparison. a The most commonly reported hepatic functions
and gene expression are presented. The value in each cell represents the activity or expression level of an HLC as a percentage of the PHH control in the
same study. HLCs are grouped based on the type of cells they were generated from. Pluripotent stem cell (PSC) derived HLCs are further grouped into: GF,
standard protocols employing growth factors; SM, protocols solely using synthetic molecules; 3D, protocols utilizing 3D matrices; Co-cult, protocols
combining multiple cell types; and LN, protocols focusing on the effect of laminin coating. Mesenchymal stem cell (MSC) derived HLCs are categorized into
the tissue of origin: AT adipose tissue, CB cord blood, BM bone marrow. b mRNA expression (log2) of genes relevant to the commonly reported hepatic
functions in PHHs cultured for 0, 1, 2, and 4 days and cultured dermal fibroblasts, from the study of Gao et al.12. Note that expression of some genes (e.g.
CYP3A4, CYP1A2, OTC) decreases >4-fold within the first 24 h of culturing, whereas expression of other genes (ALB, ASS1, SERPINA1) remains relatively
stable. Source data are provided in Supplementary Data 3.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04046-9

4 COMMUNICATIONS BIOLOGY |          (2022) 5:1094 | https://doi.org/10.1038/s42003-022-04046-9 | www.nature.com/commsbio

www.nature.com/commsbio


with the finding of Aizarani et al. that intrahepatic cholangiocytes
upregulates intestinal marker genes when cultured as organoids
in Huch expansion medium62.

Besides unwanted adult cell/tissue identities, HLCs may also
display immature hepatic identity, resembling fetal hepatocytes67.
Since CellNet was trained to only distinguish between adult tissue

identities, we created a classification algorithm based on the
transcriptome of adult and fetal hepatocytes. Corresponding with
the CellNet results, the Hep-HLCs of Fu and Xiang best
resembled the adult hepatocyte transcriptome (Fig. 3a, c).
Interestingly, none of the HLCs displayed fully mature hepatocyte
fingerprints, resulting from absence of adult markers or presence
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of fetal markers (Fig. 3c). The Chol-HLCs were not classified as
either adult or fetal hepatocytes (Fig. 3c), underlining their weak
hepatic differentiation. Among all fibroblast- and PSC-derived
HLCs, only the Fib-HLCs of Xie attained a strong adult identity,
expressing mature hepatocyte markers including ADH1B and
SRD5A2. Despite convincing liver GRN status in the CellNet
analysis, the PSC-derived HLCs from Wang still demonstrated a
fetal identity (Fig. 3b, c).

For HLC protocols using TF transduction, the extent of hepatic
(trans-) differentiation is determined in part by the effectiveness
of the TF combinations used. This effectiveness can be assessed
using the network influence scores from CellNet analysis.
Network influence scores indicated that TF transduction in Fib-
HLCs of Gao (HNF4A, FOXA3, HNF1A) and PSC-HLCs of Boon
(PROX1, FOXA3, HNF1A) increased TF expression and activa-
tion of associated TF networks, without resulting in activation of
other liver TF networks (Fig. 3d). In contrast, the additional TFs
used in the Fib-HLCs of Du (ATF5, PROX1, CEBPA, ONECUT1
(also known as HNF6)) and Xie (ONECUT1, FOXA2, GATA4)
yielded widespread activation of other liver TF networks. Of note,
low RNA expression and low network influence scores suggested
ineffective transduction of ATF5 and PROX1 in one of the Du
samples (Du-Fib-HLC-1), but effective transduction of ONE-
CUT1, which still resulted in broad hepatic TF network
activation. Together, this suggests that ONECUT1 is an important
factor in the hepatic transdifferentiation cocktail.

Additionally, we used CellNet to validate our computational
algorithm and found that the PHH/liver, fibroblast, and PSC
samples included in our analysis showed high similarity to their
corresponding CellNet training datasets (Fig. 3a, b). Furthermore,
both the ranked CellNet liver classification score and liver GRN
status correlated well with the DBS score (using all genes)
obtained through our own approach (Fig. 3e, f). This confirmed
that our transcriptomic analysis accurately quantified liver
resemblance.

Transcriptomic comparison allows prediction of HLC func-
tionality. Our transcriptomic comparison indicated substantial
variability in the expression of liver-related gene sets between
included HLCs (Fig. 2f). To determine if our comparison could
predict the ability of specific HLCs to model liver functions, we
assessed whether transcriptomic differences translate into pro-
teomic and ultimately functional differences.

We first considered publicly available proteomes of HepG2 cells
and PHHs68 and found that the transcriptomes of HepG2 cells and
PHHs from our dataset correlated very well (R2= 0.40, p < 0.0001;
Fig. 4a) to the proteomes from this independent study68. In fact, this
correlation was comparable to within-study transcriptome-proteome
correlations69 (R2= 0.41). Transcriptomic and proteomic enrichment
analyses concurrently indicated that HepG2 cells display higher
expression of cell cycle pathways and lower expression of liver-related
pathways, compared to PHHs (Fig. 4b).

We next assessed if transcriptional differences translate into
functional differences by considering Hepatitis B virus (HBV)
infection. This disease has been successfully modeled using Hep-
HLCs from Xiang and Fib-HLC form Xie6,49. Accordingly, the
expression of the genes associated with HBV infection and
propagation was best recapitulated by these two HLCs (Fig. 4c).
This confirms that for HBV, our transcriptomic comparison
could predict suitability for in vitro modeling.

We further validated the predictive power of our transcrip-
tomic comparison by considering reported albumin secretion
(Fig. 1a) because the gene expression of ALB remains stable for
several days in cultured PHHs (Fig. 1b). As such, the relative
albumin secretion of different HLCs is reasonably unaffected by
the variability of the PHH controls, and can therefore be
compared across studies. The expression of ALB in our
transcriptomic comparison was a good predictor (R2= 0.69;
p= 0.001) of reported albumin secretion for the 11 included
HLCs (Fig. 4d).

Finally, we validated that our transcriptomic comparison can
also predict the activity of functions that are highly affected by
the freshness of the internal PHH controls, such as CYP3A4
and urea cycle activity (Fig. 1b). To ensure comparability, we
performed assays of these functions in a uniform setup using
HLCs that are well-established in our group (Chol-HLCs,
FHep-HLCs, and HepG2 cells). We found that the enzymatic
activity of CYP3A4 was highest in Chol-HLCs (Fig. 4e), which
was correctly predicted by the transcriptomic comparison
(Fig. 4f). Considering urea cycle gene expression, FHep-HLCs
resembled PHH/Liver most, followed by HepG2 cells and Chol-
HLCs (Fig. 4g). In line with this, FHep-HLCs displayed highest
urea secretion among these HLCs (Fig. 4h). The smaller
expressional difference between Chol-HLCs and HepG2 cells
(Fig. 4g) did not result in differences in urea secretion levels
(Fig. 4h), possibly because two essential enzymes of the urea
cycle (CPS1 and OTC) are lowly expressed in both Chol-HLCs
and HepG2 cells (Fig. 4i). In fact, both HLCs had expression
levels similar to fibroblasts (Fig. 4g, i), which also poorly
convert ammonia to urea70. Together, these findings supported
that our cross-study transcriptomic comparison predicts HLC
protein abundance and functionality.

HLCompR web application for HLC selection. To allow other
researchers to examine the expression of an important gene or an
entire gene set to select appropriate HLC models, we created
HLCompR, a web application for easy exploration of the relative
expression of any gene (set) of interest (https://github.com/
iardisasmita/HLCompR). Additionally, HLCompR allows
researchers to filter HLCs by specific characteristics, including
culture duration, expandability, and cell source, and easily select
function- or disease- associated gene sets (Fig. 5a).

To illustrate how HLCompR can help to select the optimal
HLCs for specific research purposes, we considered liver diseases

Fig. 2 Transcriptomic comparison reveals distinct liver-specific molecular signatures in HLCs. a Schematic of the algorithm employed to conduct the
transcriptomic comparison analysis. All steps in gray were performed on the Galaxy web platform. b Summary of protocols used to generate HLCs that
were included in the transcriptomic comparison analysis. Precursory medium is any medium that was used directly prior to the final maturation medium,
including progenitor/expansion medium (hepatocyte-, cholangiocyte-, and fibroblast-derived HLCs) and hepatocyte differentiation medium (PSC-derived
HLCs). c Principal component analysis created using 5000 genes with the highest variance among all samples from different studies. d Heatmap of top-
expressed liver genes according to the Genotype-Tissue Expression (GTEx) project. Hierarchical clustering was performed using Euclidean distance.
e Distance-based similarity score (DBS) calculated using Euclidean distance describing the resemblance between each sample to all PHH/Liver samples
based on the top-expressed liver gene set. Box-and-whisker plots are shown as median (line), interquartile range (box), and data range or 1.5x interquartile
range (whisker). f Heatmap showing the median DBS of all samples using various liver function associated gene sets. Red outlines indicate the HLC with
the highest DBS for each gene set. g The median DBS of all samples relative to PHH/Liver based on the pericentral and periportal modules (see Fig. 2c for
legend). Source data are provided in Supplementary Data 4 and 5.
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associated with a single gene defect (Fig. 5b). This showed that
multiple HLCs express the SERPINA1 gene on a similar level to
PHHs, and might therefore be appropriate to study protein
secretion and activity in alpha-1-antitrypsin deficiency. In
contrast, only a few HLCs may optimally model the function of
the enzyme affected in glycogen storage disease type 1a (G6PC;

Fig. 5b). The optimal choice for modeling this disease would be
the Fib-HLCs from Xie.

For more complex liver diseases associated with multiple genes,
the distance-based similarity score of the disease-associated gene
set provides a better overview of the modeling capabilities of
various HLCs. For example, Hep-HLCs better resembled the
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b c
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hepatic expression of genes related to non-alcoholic fatty liver
disease (NAFLD) compared to HepG2 cells, which are commonly
used to model NAFLD71 (Fig. 5c). In addition to transcriptional
resemblance to PHH, NAFLD modeling requires long-term
culturing of fully matured HLCs. Therefore, Hep-HLCs from
Xiang, which can be maintained in a differentiated state for
1 month, may represent the optimal in vitro model for this
disease.

Addition of new HLC transcriptomes to the HLCompR web
application. Given the technical challenges and variability
inherent to HLC protocols, replication of such protocols might
not yield phenotypically identical HLCs. In addition, new HLC
protocols are continually developed. We therefore supported
addition of new RNA-seq data to the HLCompR analysis using
read counts processed according to our pipeline as inputs (https://
github.com/iardisasmita/HLCompR).

To determine whether new datasets can be compared using
HLCompR, we tested publicly available RNA-seq datasets of
PHH or liver tissue samples in the application48,72–76. We also
included several studies that did not meet our RNA-seq inclusion
criteria43,44 (query dataset) (Supplementary Fig. 1). The samples
included in Fig. 2 served as the training dataset for HLCompR.

The query dataset from Gupta et al.74 was compatible with
HLCompR because their PHH and liver samples clustered
together with the training samples (Fig. 6a). Accordingly, these
samples acquired high liver classification and liver GRN status
scores in CellNet (Fig. 6b, c). Query datasets of Shi et al.75 and
Vieyres et al.76 were also compatible with HLCompR, even
though their PHH clustered in between the training PHH/liver
samples and hepatocyte-derived HLCs (Fig. 6a and Supplemen-
tary Fig. 8a). CellNet classified their PHH samples as liver, but
their liver GRN status was slightly lower than training PHH/liver
samples (Fig. 6b, c and Supplementary Fig. 8b, c).

The query dataset from Unzu et al.44 was incompatible with
HLCompR, because the PHHs from their dataset did not cluster
with the training data, but the PSCs did (Fig. 6a). Concurrently,
analysis with CellNet showed incorrect classification of PHHs and
correct classification of PSCs (Fig. 6b, c). Similarly, PHHs
included in the query datasets from ter Braak et al.72, Wang
et al.48, and Guan et al.73 did not cluster with the training dataset
(Fig. 6a and Supplementary Fig. 8a), which was also reflected by
low CellNet liver scores (Fig. 6b, c and Supplementary Fig. 8b, c).
Samples from Touboul et al.43 clustered close to the respective
training samples on principal component 1 (PC1) but were
separated by principal component 2 (PC2) (Fig. 6a). Still, CellNet
analysis showed classification scores similar to those of training
samples (Fig. 6b, c). Interestingly, when changing the number of
genes considered for PCA or reducing the number of samples
included (Supplementary Fig. 8d), the samples of Touboul et al.43

clustered together with the training samples. Nevertheless, we
considered the samples from Touboul et al.43 incompatible with
HLCompR. We recommend use of HLCompR only when control
PHH/liver samples are comparable to the training PHH/liver

samples. We added a Random Forest classifier that automatically
reports compatibility of a new dataset based on this parameter.

Since standardized mapping and RNA-seq processing may still
result in incompatibility with HLCompR, we hypothesized that
the type of RNA-seq library preparation or sequencer might
influence compatibility (Supplementary Data 2). Based on this
possibility, we suggest that libraries should be prepared using
standard Illumina TruSeq RNA sample preparation kit and
sequenced with Illumina sequencing machines. As we cannot
guarantee compatibility, new datasets should always include
PHH/liver control samples.

When a dataset is compatible with HLCompR, new HLC
samples can be compared to the other HLCs in the training
dataset. For example, in the query dataset from Gupta et al.74, the
hepatically differentiated hepatoma cell line HepaRG showed
better resemblance to PHHs than HepG2 cells (Fig. 6a).
Correspondingly, HepaRG cells have also been reported to
perform better at hepatic functional assays than HepG2 cells77.

Discussion
The availability of myriad hepatocyte model systems gives
researchers the option to select one that best suits their study, but
an educated choice is hampered by the absence of standardized
evaluation. We addressed this by performing a comprehensive
cross-study comparison of HLCs, derived from various cell
sources. Our literature search showed that only a small subset of
hepatic functions is routinely tested in direct comparison to PHH
controls, precluding cross-study comparison of HLCs. Further-
more, as cultured PHHs rapidly lose specific hepatic functions, a
major determinant of the relative activity of these functions in
HLCs is the culture time of control PHHs. Since various HLC
studies use control PHHs cultured for different durations, the
relative activities of most reported hepatic functions cannot be
reliably compared across studies. Therefore, we not only recom-
mend that protocols describing new HLCs report a set of minimal
hepatic characteristics78, but we also stress the importance of
using standardized assays and inclusion of control PHHs that are
cultured for a standardized duration.

Using currently available RNA-seq data, we developed a
computational algorithm for in-depth cross-study comparison of
HLCs with minimal study-specific batch effects. This allowed
evaluation of genes that are rarely investigated in individual
studies but may be important for specific hepatic functions or
liver disease models. Our analysis revealed that the transcriptomic
profile of HLCs is determined by the cell of origin and the pro-
tocol used, with hepatocyte-derived HLCs most closely resem-
bling PHHs. In addition, we identified hepatic marker genes that
are lowly expressed in most HLCs, including CYP2E1, ADH1A,
F9, and SERPINC1. These genes may serve as important indica-
tors of mature hepatic differentiation, besides common markers
such as ALB, CYP3A4, and SERPINA1.

We found that hepatic genes are differentially expressed
between different HLCs. This underlines the importance of
selecting the most appropriate HLC for a specific research

Fig. 3 HLCs display different cell/tissue identities. a Cell/tissue classification heatmap showing different cell/tissue identities of various HLCs. The
classification scores represent the probability that the samples express indistinguishable gene regulatory networks (GRN) from the training dataset. b Liver,
fibroblast, and embryonic stem cell (ESC) GRN status of HLCs and CellNet training datasets expressed as mean values. Each dot and error bar represents
an individual sample and the standard deviation, respectively. c Heatmaps showing the adult/fetal hepatocyte classification score and expression of
representative marker genes for the adult and fetal hepatocyte identities. d Heatmap showing the network influence scores (NIS) and expression values of
liver-associated transcription factors (TFs). Asterisks and dots indicate the TFs used for transductions. e Spearman correlation between the rank of CellNet
liver cell/tissue classification score or f CellNet liver GRN status and the rank of the DBS for all genes. Lower ranks represent higher liver classification,
GRN status, and DBS. Spearman’s correlation coefficient (r) and P value (p) are shown on the top left of the graphs (n= 62 biologically independent
samples). Dotted lines represent the 95% confidence interval. Source data are provided in Supplementary Data 6.
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Fig. 4 Transcriptomic comparison allows prediction of HLC functionality. a Scatter plot of protein abundance ratios against corresponding mRNA ratios
in HepG2 cells vs. PHHs for proteins/genes that are detected in both transcriptome (from our transcriptomic comparison) and proteome (from Tascher
et al.68). Pearson’s coefficient of determination (R2) is shown at the top left of the plot. b Scatter plot of enriched pathways based on transcriptome and
proteome. Only pathways that are enriched on both the transcriptomic and proteomic levels are shown. c Heatmap and DBS of hepatitis B associated genes
according to the DisGeNET database. Red highlight indicates the predicted optimal hepatocyte in vitro models. d Correlation plot of the gene expression
levels of ALB from the transcriptomic comparison data (x-axis) and the reported relative albumin secretion (y-axis) in included HLCs. Pearson’s coefficient
of determination (R2) and P value (p) are shown on the bottom right of the graph (n= 11 biologically independent samples). Dotted lines represent the 95%
confidence interval. e CYP3A4 activities presented as mean. f Gene expression level of CYP3A4 from the transcriptomic comparison data presented as
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FHep-HLC, and PHH/liver samples from different studies are presented. h Urea secretion level presented as mean. i Gene expression level of CPS1 and OTC
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question. We validated that our transcriptomic HLC comparison
allows functional performance prediction in well-established
models in our laboratory. The strong correlation between tran-
scriptional and functional profiles supports the use of our tran-
scriptomic comparison as a resource to select HLCs for specific
research goals. Choosing the optimal HLCs is accommodated by
our web application (HLCompR), which allows filtering by HLC
properties and selecting custom gene sets. This functionality sets
HLCompR apart from other comparison platforms such as
CellNet, which are focused on evaluating the general cell identity
of HLCs. The HLCompR web application also allows researchers
to test HLCs generated in their own laboratories, including
replications of HLC protocols included in this study or devel-
opment of novel HLC protocols, if the PHH control is compar-
able to the training dataset. Therefore, we advise that protocols

describing new HLCs provide publicly available transcriptomic
data alongside PHH controls that serve as a benchmark for cross-
study comparability.

Besides transcriptional and functional similarity to PHHs,
other characteristics may be important when selecting the opti-
mal liver in vitro model, including the ability to derive HLCs
from small biopsies for personalized medicine. This can be
achieved by using skin-derived fibroblasts that are directly
transdifferentiated (Xie, Gao, Du) or reprogrammed to induced-
PSCs (iPSCs) that are subsequently differentiated to HLCs (Koui,
Gao, Mun). Using a specific combination of TFs, direct trans-
differentiation of fibroblasts resulted in HLCs that are tran-
scriptionally closer to PHHs than most PSC-derived HLCs. Our
approach specifies the effects of these TFs. The combination of
TFs used by Xie, for example, not only induced activation of gene
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Fig. 5 HLCompR web application for HLC selection. a The HLCompR web application allows filtering for HLCs based on various properties and enables
easy selection of gene sets relevant to hepatic functions and diseases. b Heatmap showing the relative expression of SERPINA1 and G6PC between samples.
c Boxplot showing DBS of non-alcoholic fatty liver disease-associated genes according to the DisGeNET database. Box-and-whisker plots are shown as
median (line), interquartile range (box), and data range or 1.5x interquartile range (whisker).
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networks regulated by the transduced TFs, but also of other
networks (Fig. 3d). Addition of ATF5 and PROX1, which were
relatively poorly established in the Fib-HLCs of Xie may further
improve hepatic differentiation.

Hepatocyte maturity cannot be solely defined by the tran-
scriptome, but should also be determined by the proteome and
ultimately the functionality. However, reliable comparison of
hepatic functionality between HLCs requires complete standar-
dization of methodology and PHH controls. In practice, this
entails performing the assays in all HLCs simultaneously using

the same experimental setup. Given the difficulties in reproducing
all HLCs, this would be highly challenging. Therefore, tran-
scriptomic comparison may represent the most compelling
solution to ensure standardization of multiple samples from
various studies. Indeed, this allows evaluation of HLCs using a
common benchmark of PHH controls from multiple studies,
preventing over- or underestimation of hepatic characteristics
caused by suboptimal PHH controls in individual studies.
Additionally, transcriptomic comparison enables comprehensive
characterization based on more than a handful of reported

Fig. 6 Addition of new HLC transcriptomes to the HLCompR web application. a Principal component analysis on query datasets. Circles indicate the cell
or tissue types in the query datasets that are also present in the training dataset (e.g., PHH, liver, HepG2, fetal hepatocyte, and PSC) or the HepaRG
samples in Gupta74 dataset. HLCompR compatibility is categorized based on the comparability of PHHs and liver tissue between the query and training
datasets. b Cell/tissue classification heatmap of representative training samples and query samples. c Gene regulatory network status of liver and
embryonic stem cells (ESCs) of all PHH, liver, HepG2, and PSC samples from training dataset and query dataset presented as mean ± standard deviation.
Source data are provided in Supplementary Data 8.
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marker genes. This includes assessment of multiple cell/tissue
identities and the extent of hepatocyte maturation (Fig. 3).

In summary, this study provides a method and a web appli-
cation (HLCompR) to compare and evaluate HLCs from multiple
studies. We found that the transcriptome of hepatocyte-derived
HLCs is currently most similar to primary hepatocytes. For
personalized medicine purposes however, dermal fibroblasts are
more readily available and improvements in direct transdiffer-
entiation of fibroblasts have resulted in excellent HLCs. Impor-
tantly, our strategy allows identification of individual TFs or
culturing conditions that might improve hepatic differentiation.
Moreover, evaluation of HLCs alongside relevant control tissues
provides insight into their tissue identity. These insights will
guide improvement of HLC culture protocols, thereby advancing
hepatic in vitro modeling and supporting regenerative strategies.
Finally, although we focused on in vitro models of hepatocytes,
the same method may be applied to evaluate in vitro models of
other cell types or organs.

Methods
Data collection. The PubMed database was systematically searched for studies that
mention the development or evaluation of HLC culturing protocols. Search terms
were selected to include studies performing long-term culturing of human primary
hepatocytes or (trans)differentiation of human somatic or stem cells into HLCs,
including functional or transcriptomic evaluation (Supplementary Fig. 1). The titles
and/or abstracts of all hits were screened, including studies describing and evalu-
ating new HLC protocols, and excluding studies using previously described HLC
protocols. During subsequent full-text screening, only studies that functionally
evaluated new HLC protocols alongside PHH as a common standard were selected
for functional and expressional comparison in Fig. 1. Finally, from selected studies,
only those providing publicly available bulk RNA-seq datasets with the inclusion of
PHH/liver controls were included for analysis in our computational algorithm
(Supplementary Fig. 1).

Functional and expressional comparison of HLCs using reported data.
Quantification of functional assays and mRNA expression by qPCR was estimated
based on the figures and graphs provided in the original studies. Functional and
expressional data of HLCs were normalized to the corresponding PHH data from
the same study and represented as a percentage. Pearson correlation between assays
and/or gene expression was calculated and visualized using GraphPad Prism 8.

Study approval and human subjects. The study was approved by the responsible
local ethics committees (Institutional Review Board of the University Medical
Center Utrecht (STEM: 10-402/K; TcBio 14-008; Metabolic Biobank: 19–489),
Erasmus MC Medical Ethical Committee (MEC-2014-060), and the Dutch Ethical
Medical Council (Leiden University MC)). Tissue biopsies from livers of healthy
donors were obtained during surgery in the Erasmus MC, Rotterdam. Human fetal
livers were obtained from Leiden University Medical Centre (MC). All patient
materials were used after written informed consent.

Organoid establishment and culture. Cholangiocyte-derived organoids were
established and cultured as described previously17. To obtain the cells, liver
biopsies were cut into small pieces and digested using 10 mg/ml Collagenase D
(Sigma, 11088866001) for 20 min at 37 °C. The samples were then washed with
cold Advanced DMEM/F12 (Gibco, 12634028) supplemented with 2 mM Glu-
taMAX (Gibco, 35050061), 10 mM HEPES (Gibco, 15630080), 100 U/ml Pen-
Strep (Gibco, 15140122), and spun at 1500 rpm for 5 min. Cell pellet was plated
in matrigel (Corning, 356231) and culture medium was added. Culture media
was based on Advanced DMEM/F12 supplemented with 2 mM GlutaMAX,
10 mM HEPES, 100 U/ml PenStrep, 2% B27 without vitamin A (Gibco,
12587010), 10 mM Nicotinamide (Sigma, N0636), 1.25 mM N-Acetylcysteine
(Sigma, A9165), 10% RSPO1 conditioned media (homemade), 10 nM Gastrin
(Tocris, 3006/1), 50 ng/ml EGF (Peprotech, AF-100-15), 100 ng/ml FGF10
(Peprotech, 100-26), 25 ng/ml HGF (Peprotech, 100-39), 50 μg/ml Primocin
(Invivogen, ant-pm-2), 5 μM A83-01 (Tocris, 2939/10), and 10 μM Forskolin
(Tocris, 1099/10). For the first 3 days after isolation from biopsies, the medium
was supplemented with 30% Wnt conditioned media (homemade), 25 ng/ml
Noggin (Peprotech, 120-10C), and hES cell cloning recovery solution (Stemgent,
010014500). The medium was changed every 3–4 days and organoids were
passaged 1:4–1:8 each week. Differentiation towards hepatocyte was initiated by
culturing the organoids in culture medium supplemented with 25 ng/ml BMP7
(Peprotech, 120-03) for 5–7 days. The medium was then changed to Advanced
DMEM/F12 supplemented with 2 mM GlutaMAX, 10 mM HEPES, 100 U/ml
PenStrep, 2% B27 without vitamin A, 1.25 mM N-Acetylcysteine, 10 nM Gastrin,
50 ng/ml EGF, 25 ng/ml HGF, 100 ng/ml FGF19 (Peprotech, 100-32), 50 μg/ml

Primocin, 500 nM A83-01, 25 ng/ml BMP7, 10 μM DAPT (Sigma, D5942), and
30 μM Dexamethasone (Sigma, D4902) for 8 days.

Fetal hepatocyte-derived organoids were established and cultured as described
previously58. Human fetal liver tissue was chopped and digested using 100 μg/ml
Collagenase Type IV (Sigma, C5138) for 5 min. Cells were washed with Advanced
DMEM/F12 supplemented with 2 mM GlutaMAX, 10 mM HEPES, 100 U/ml
PenStrep, filtered through 100-μm filter, and plated in matrigel. After matrigel had
solidified, HEP medium was added. HEP medium consisted of Advanced DMEM/
F12 supplemented with 2 mM GlutaMAX, 10 mM HEPES, 100 U/ml PenStrep, 2%
B27 without vitamin A, 15% RSPO1 conditioned media, 2.5 mM Nicotinamide,
1.25 mM N-Acetylcysteine, 3 μM CHIR-99021 (Sigma, SML1046), 50 μg/ml
Primocin, 50 ng/ml FGF7 (Peprotech, AF-100-19), 50 ng/ml FGF10, 50 ng/ml
HGF, 50 μM Y-27632 (Abmole Bioscience, M1817), 1 μM A83-01, 20 ng/ml TGFα
(Peprotech, 100-16 A), 50 ng/ml EGF, and 10 nM Gastrin. Medium was refreshed
every 2–3 days and organoids were passaged 1:2–1:5 every week.

RNA sequencing of intrahepatic cholangiocyte- and fetal hepatocyte-derived
organoids. For RNA sequencing analysis, we included liver samples, intrahepatic
cholangiocyte-derived organoids, and fetal hepatocyte organoids that were cultured
as described above. RNA was isolated using Trizol LS reagent (Invitrogen) and
stored at –80 °C until further processing. mRNA was isolated using Poly(A) Beads
(NEXTflex). RNA integrity was assessed using the Agilent RNA 6000 Nano kit and
concentrations were determined using the Qubit RNA HS Assay Kit. Only RNA
samples with RIN > 8.0 were used for sequencing. Sequencing libraries were pre-
pared using the Rapid Directional RNA-Seq Kit (NEXTflex) and sequenced on a
NextSeq500 (Illumina) to produce 75 base long reads (Utrecht Sequencing
Facility).

Raw read processing and normalization pipeline. Raw reads from the RNA-seq
data were obtained from the European Nucleotide Archive (ENA, https://www.ebi.
ac.uk/ena). Raw reads were processed using Galaxy (https://usegalaxy.eu/) web-
based platform79. Sample quality was assessed using FastQC tool (Galaxy Version
0.72). Low quality reads and adapter sequences were trimmed using Cutadapt
(Galaxy Version 1.66.6). Alignment of the raw reads and quantification of gene
expression were performed using RNA STAR tool (Galaxy Version 2.7.2b). Reads
were mapped to Gencode human reference genome sequence release 33
(GRCh38.p13) and Gencode comprehensive gene annotation v33, using default
parameters. Read counts were obtained using the “–quantMode GeneCounts”
option in the RNA STAR tool. Normalized counts were obtained by applying the
DESeq2 variance-stabilizing transformation (VST) to the read counts using the
‘DESeq2’ R package80 followed by quantile normalization using the ‘preproces-
sCore’ R package81. Additional information regarding our normalization pipeline is
provided in Supplementary Note 1 and Supplementary Fig. 9.

Principal component analysis. Principal component analysis (PCA) was per-
formed using normalized counts and plotted using the ‘ggplot2’ R package by
adopting the R function ‘plotPCA’ (including top 5,000 highest variance genes)
from the ‘DESeq2’ R package.

Euclidean distance and distance-based similarity. The Euclidean distance was
calculated by applying the R function ‘dist’ (method=euclidean) to the normalized
counts. Distance-based similarity score (DBS) was defined so that a DBS of ‘1’
signifies perfect similarity to PHH controls and ‘0’ signifies the sample least similar
to PHH controls. The DBS for each sample was obtained using the following
formula:

DBS ¼ ðMaxPHH � DistPHHÞ=MaxPHH ð1Þ
MaxPHH: the maximum distance value to PHH in the sample matrix of a certain

gene set.
DistPHH: the distance value of a sample to PHH.

Gene expression heatmaps. To visualize gene expression, normalized counts were
mean-centered per row or gene (Log2FC RNA Expression) and plotted in heat-
maps using the ‘pheatmap’ R package. When cluster trees were absent in heatmaps,
columns were ordered by the type of cell source.

CellNet analysis. The bulk RNA-Seq CellNet pipeline was employed to quantify
gene expression estimates as previously described65, using the ‘cn_salmon’ function
for alignment to reference genome GRCh38. Classification and gene regulatory
network (GRN) status analysis were performed using the ‘cn_apply’ function,
based on the human cnProc_HS_RS_Jun_20_2017 object trained by 14 types of
cells and tissues from 97 studies. Tissue classification scores were exported and
plotted in heatmaps using the ‘pheatmap’ R package. GRN status scores were
exported and plotted in bar graphs using the ‘ggplot2’ R package. Network influ-
ence scores of tissue-specific transcription factors were calculated using the
‘cn_nis_all’ function for ‘liver’. Network influence scores were exported and plotted
in heatmaps alongside the normalized expression of corresponding genes, using the
‘pheatmap’ R package.
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Classification of adult vs. fetal hepatocyte identity. Top 5000 genes with the
highest variance across different cell types (primary human hepatocytes, fetal
hepatocytes, common bile duct, fibroblasts, and pluripotent stem cells) were used
to build a Random Forest classifier using the “randomForest” R package. Samples
used to train the classifier are listed in Supplementary Data 2. Performance of the
classifier was evaluated using the out-of-bag error rate.

Comparison of transcriptomic analysis to proteomes. The gene expression of
various HepG2 cells, relative to the control PHH/livers, was compared to the
publicly available proteomic data of HepG2 cells and PHHs from Tascher
et al.68. Of the 3995 identified proteins, 3703 (93%) could be matched to a
unique gene included in the transcriptomic analysis. Enrichment analysis was
performed in ernichR82 using differentially abundant proteins (Tukey p
value < 0.05, lfc > 1; data from Tascher et al.68) and differentially expressed genes
(padj <0.05, lfc >1) as separate inputs. Proteome and transcriptome enrichment
scores were defined as log2 of the odds ratio and log2 of the inverse odds ratio
for upregulated and downregulated genes in HepG2 vs. PHH samples,
respectively.

Functional assays. Urea secretion was measured using a urea assay kit (Abcam,
ab83362) according to the manufacturer’s instructions. Briefly, 1 mM ammonium
chloride was added to the culture medium. After 24 h, urea concentration in the
medium was measured. CYP3A4 activity was measured using a P450-Glo CYP3A4
assay kit (Promega, V9001) according to the manufacturer’s recommendations. All
data were normalized to total protein content measured using Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific, 23225).

PHH/liver quality control for HLCompR inclusion. Quality of new PHH/liver
data was assessed using the Random Forest classifier. The RNA-seq data used in
Fig. 2 served as a training dataset to build the classifier. A dataset is not recom-
mended to be used when the new PHH/liver samples have PHH/liver classification
probability below 45%.

Statistics and reproducibility. Statistical analyses (Pearson’s and Spearman’s
correlation) were performed using GraphPad Prism 8. Results were considered
significant when p < 0.05. Sample sizes are generally indicated in the figures. For
transcriptomic studies we included a minimum of two samples per type of
hepatocyte-like cell (HLC) model, if available. In experiments designed to
compare the functional capabilities of HLCs, we included at least two biological
replicates for each HLC model. Unless stated otherwise, bar graphs are shown as
mean ± standard deviation and box-and-whisker plots are shown as median
(line), interquartile range (box), and data range or 1.5x interquartile range
(whisker).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary of previously published reported assays and gene expression data included in
this study is available in Supplementary Data 1. List of RNA-sequencing data used in this
study is available in Supplementary Data 2. Raw counts, normalized counts, and
metadata of the RNA-sequencing data used in this study is available in Supplementary
Data 4. Source data underlying the figures are available in Supplementary Data 3–8.
Processed RNA-sequencing data generated in this study have been deposited in the NCBI
Gene Expression Omnibus database under accession number GSE214097. Raw RNA-
sequencing data are not publicly available due to potential information that could
compromise donor consent. All materials supporting the findings of this study are
available from the corresponding author upon reasonable request.

Code availability
R code for running the HLCompR web application is available on GitHub (https://
github.com/iardisasmita/HLCompR) and Zenodo (https://doi.org/10.5281/zenodo.
7071219). Further requests can be directed to the corresponding author.
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