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Infectiousness of places – Impact of multiscale human activity
places in the transmission of COVID-19
Lun Liu 1,2✉, Hui Wang 3✉, Zhu Zhang1, Weiyi Zhang1, Shengsheng Zhuang4, Shenhao Wang 5,6,7, Elisabete A. Silva8,9,
Tingmiao Lv1, Chi On Chio1, Yifan Wang1, Rina Dao1, Chuchang Tang1 and On Ieng Ao-Ieong1

COVID-19 raises attention to epidemic transmission in various places. This study analyzes the transmission risks associated with
human activity places at multiple scales, including different types of settlements and eleven types of specific establishments
(restaurants, bars, etc.), using COVID-19 data in 906 urban areas across four continents. Through a difference-in-difference
approach, we identify the causal effects of activities at various places on epidemic transmission. We find that at the micro-scale,
though the transmission risks at different establishments differ across countries, sports, entertainment, and catering establishments
are generally more infectious. At the macro-scale, contradicting common beliefs, it is consistent across countries that transmission
does not increase with settlement size and density. It is also consistent that specific establishments play a lesser role in transmission
in larger settlements, suggesting more transmission happening elsewhere. These findings contribute to building a system of
knowledge on the linkage between places, human activities, and disease transmission.
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INTRODUCTION
Humans continue to migrate to large, dense urban settlements in
the past century. The consequent growth of cities brings benefits
such as economies of scale and knowledge spillovers, but also
increases the vulnerability of daily life to risks related to people’s
agglomeration and interaction, such as congestion, crime, and
infectious disease1,2, for which COVID-19 is a prominent example.
In the spread of these risks, places containing different activities
are key risk units that link physical environments, human activities,
and risk factors. To understand the impact of different places in
risk transmission would be important for the science and practice
in enhancing the resilience and life quality of human settlements.
The strike of COVID-19 raises the concern about the epidemio-

logical risks of places, which, however is seldom evaluated. In
theory, different types of activity places could lead to different
chances of virus transmission. At the macro-scale, dense settle-
ments lead to physical proximity among residents, and large
settlements connect more people—both might generate more
contacts and increase the dissemination of infectious diseases3–5.
At the micro-scale, different types of establishments, such as
restaurants, museums, and sports fields, are also likely to generate
different chances of virus transmission, influenced by the contacts
made through corresponding activities and the physical environ-
ments. This paper, therefore, aims to quantify the virus transmis-
sion risks associated with different settlement characteristics at
the macro-scale and establishments at the micro-scale as well as
their interactions, to build a system of knowledge on the
infectiousness of human activity places and inform relevant
policy-making.
Though the risk of virus transmission at different types of places

can be evaluated with mechanistic modeling6,7, it is difficult to
find data to meaningfully calibrate the strengths of different

human interactions in the simulation. Alternatively, we take
advantage of the natural experiments provided by the diverse
government interventions, including the closure of many activity
places across regions and countries in COVID-19 and examine the
role of places in virus transmission with natural experimental
methods. Although there have been a body of research using
these empirical data to estimate the efficacy of government
interventions in COVID-19, our work is more fine-grained in the
types of activity places examined8–18. In this work, we examine the
impacts of two macro-scale place characteristics, population size
and density, which have been found to affect many social
quantities5,19, and eleven common micro-scale establishments,
that are schools, childcare centers, offices, non-essential retails,
restaurants, bars, entertainment venues, cultural venues, religious
venues, indoor sports venues and outdoor sports grounds
(detailed descriptions in Supplementary Table 1). We use four
countries from four continents as study cases, which are Japan in
Asia, the United Kingdom in Europe, the United States in North
America, and Brazil in South America (Supplementary Figs. 1–4).
The four countries are diverse in settlements’ spatial form, lifestyle,
culture, and government actions in COVID-19, which could
enhance the generalizability of our findings.
We employ a natural experiment-based econometric approach

called difference-in-differences (DiD), which is widely used in
examining the causal relationship in social sciences and estimates
the causal impact of treatment through differences in treatment
timing in different units20. To be more specific, for estimating the
impact of a group of establishments in virus transmission, the DiD
method subtracts the course of the epidemic in spatial units
where that group of establishments get closed or reopened from
the epidemic course in spatial units where the status of the same
establishments remain unchanged, assuming that the epidemic in
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the two groups should move in parallel trend absence of the
change. By subtracting the trends, this method can rule out the
influence of simultaneous behavioral changes shared by all spatial
units. Simultaneous behavioral changes could happen when
people started to be more cautionary as an intervention got
implemented, driven by the gravity of the pandemic or the
signaling effect of the intervention, resulting in the overestimation
of intervention effects10. The DiD method can subtract out the
common behavioral changes in a country, thus alleviating the
problem of overestimation21. The choice of spatial units in each
sample country is based on two criteria: first, infection data and
other socioeconomic data are available for the spatial units; and
second, the spatial units are as close as possible to the spatial
extents of settlements (a continuously built-up area). Spatial units
with a population larger than 100,000 are taken as samples, as
smaller units may not have enough infection cases to produce
reliable estimates. These criteria led to 45 spatial units in Japan,
234 in the United Kingdom, 308 in the United States, and 319 in
Brazil after cleaning missing data (detailed explanations on the
choice of spatial units in Supplementary Methods).
We start by evaluating the risks of virus transmission at different

types of establishments, by estimating the causal impacts of
establishment closures on the course of the epidemic. This is
implemented by modeling the relationship between instanta-
neous reproduction numbers (Rt) in the spatial units and the status
of various establishments, controlling for other interventions (stay-
at-home orders and gathering bans). We estimate separate
models for each country to allow for heterogeneous infection
risks at various establishments in different countries, considering
cross-country differences in lifestyle, culture, urban form, etc.
Correlation analysis shows that Kendall’s correlation coefficients
between the status of establishments are mostly lower than 0.8 in
our data set, despite that in some cases, governments close or
reopen multiple types of establishments together (Fig. 1),
providing at least 180 unit-day differences between the status
of any pair of establishments. We also verify that the estimates are
not sensitive to removing establishment status variables, suggest-
ing manageable collinearity (Supplementary Methods). The
estimation is implemented through a two-way fixed effect model
with fixed effects of days and spatial units, which is a widely used
modeling method to implement DiD analysis22.
To perform the analysis, we combine data from a variety of

sources, including COVID-19 infection case data, government
intervention data, and socioeconomic characteristics of spatial
units (see Supplementary Methods for a detailed description of
data sources). We use data from the first pandemic wave, that is,
from March to August 2020, since there could be more factors
potentially biasing the analysis in later periods of the pandemic,
including lockdown fatigue, virus variants, vaccination, etc.9.

RESULTS
Infection risks at micro-scale establishments
The DiD analysis provides estimates on the percentage reduction
in Rt caused by closing each type of establishment (computed
from direct model outputs as 1-ex, where x denotes direct model
outputs shown in Fig. 2). The reductions can be further interpreted
as the proportions of total infections related to the respective type
of establishments, which could happen through human interac-
tions either inside these places or on the way to these places.
Closures of establishments that show a statistically significant
impact on reducing Rt in each country are (with a 95% confidence
interval): entertainment venues (53%, 4 to 77%) in Japan;
restaurants and cultural venues (combined with indoor gathering
ban whose effect is inseparable, 25%, 5 to 41%) and indoor sports
venues (43%, 13 to 63%) in the United Kingdom; entertainment
venues (17%, 1 to 31%) in the United States; and non-essential

retails (20%, 9 to 31%) and indoor sports venues (36%, 27 to 43%)
in Brazil (Fig. 2, full model results in Supplementary Table 2). These
results reflect the establishments with the largest epidemiological
risks in each country.
Most of the establishment status variables satisfy the parallel

trend assumption, meaning that the estimates are not biased by
potentially different pre-trends of Rt in areas that close or reopen a
group of establishments and those that do not (detailed
methodology and results of the parallel trend test in Supplemen-
tary Methods and Supplementary Table 3). The estimates are also
generally robust to a number of alternative settings in the analysis,
including withholding spatial units from the sample and increas-
ing or decreasing variables in the model, suggesting that they are
not likely to be affected by individual influential spatial units and
the correlation among variables (Supplementary Figs. 5, 6, detailed
methodology and results in Supplementary Methods).
Considering that epidemic response plans often need to

identify a set of establishments with the largest combined impact,
we further estimate the joint impacts of all possible combinations
of establishments in each country based on the previous results.
The full results can be found in the repository of this project (see
Code Availability). Here we present the maximum reduction in Rt
that can be achieved by closing a given number of establishments
(Fig. 3). Our analysis suggests that the largest reductions in Rt are
achieved by closing two to six types of establishments, while more
closures do not further bring reproduction numbers down.
Governments could resort to this kind of analysis when making
cost-effective intervention strategies.

Infection risks at macro-scale settlements
The fixed effects of spatial units in the two-way fixed effect model
estimated in the previous step can be interpreted as the intrinsic
speed of virus transmission in each spatial unit absence of any
spontaneous or compulsory behavioral changes. This fixed effect
could be a combined outcome of settlements’ spatial (such as size
and density) and socioeconomic characteristics, such as the age,
ethnicity, and wealth of residents. Based on this, we estimate the
impacts of settlement size and density on this intrinsic speed of
virus transmission using linear regression with the unit fixed
effects as the dependent variable and settlement socioeconomic
characteristics as control variables.
The impacts of settlements’ population size and density are

fairly consistent across the four countries (Table 1). Population size
is negatively correlated with spatial unit’s fixed effect on Rt and
this is statistically significant in three of the four countries, where
the effect size ranges between 2.0% (1.1 to 3.2%) to 4.9% (2.3 to
7.5%) reduction of Rt per million increase of population. The
impact of density is less clear, yet none of the estimates is
positively significant, as suggested by the common beliefs
mentioned in the introduction. These results contradict the
impression that large and densely populated cities tend to be
epicenters and suggest that in terms of the reproduction number,
large and dense cities are not riskier, but even less. Explanations
for the negative relationship between settlement size and Rt
might include better health infrastructures in large cities and
people’s stronger awareness of the risk, thus more cautious
behavior23,24. Nonetheless, more data is needed to testify these
possible explanations.

Varying risks by the interaction between the two scales
We also examine the interaction between macro-scale settlement
characteristics and micro-scale establishments in the transmission
of COVID-19, since the activity pattern of residents in different
types of settlements could be different, leading to the hetero-
geneous distribution of infection risks. To do this, we re-estimate
the maximum joint effects of establishment closures on separate
samples of relatively large and small, and high-and low-density
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spatial units. The high/low samples are split by the median
population size (174,980 people) and density (681 people per
squared kilometer) of all sample spatial units, except for Japan,
where the population size and density are generally much higher
so we use the median of its own (314,082 people and 5671 people
per squared kilometer, respectively). More details on the
specification of the models and sensitivity tests can be found in
Methods and Supplementary Methods.
The comparisons are remarkably consistent across the four

countries in terms of the interaction with settlement size—the
impacts of establishment closures are larger in relatively small
settlements, reflecting a higher share of infections accounted for
by specific establishments in smaller settlements (Fig. 4a). In other
words, a larger proportion of infections are related to general

public spaces in large settlements, which might include streets,
public transits, etc.25. The disparity in the proportion of infections
accounted by establishments ranges between 3 and 18%. The
impacts are also larger in relatively low-density settlements in
Japan and Brazil, and the impacts are close to each other in the
United Kingdom and the United States. Nonetheless, no common
pattern is observed for individual types of establishments. This
could be because there are many variations in terms of the
physical conditions and social interactions at these activity places
in different countries.
To test whether the results hold when the population and

density thresholds change, we repeat the analysis with a series of
cut-off values between the first and third quantiles of population
size and density in each country. The results are generally stable

Fig. 1 Correlation between the status of establishments and other government interventions. The matrices show pairwise Kendall’s
correlation coefficients between the status of establishments and other government interventions across the spatial units in each country
during the study period. Bold texts indicate the establishments and regular texts are the other government interventions that we control for.
Gray lines indicate that information on the corresponding intervention is missing in the country. The correlation coefficients are estimated
based on samples excluding unit-day observations where the coefficient of variance for Rt estimate is larger than 0.3 (suggesting unreliable
estimates), which are 2400 in Japan, 24,285 in the United Kingdom, 41,752 in the United States, and 34,812 in Brazil.
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regardless of the threshold used to split the samples, and are
particularly consistent in terms of settlement size: the proportion
of infections accounted for by various establishments are always
bigger in relatively small settlements than in large settlements in
all sample countries (Fig. 4b). Similar pattern also exists with
regard to settlement density in Japan and less prominently in
Brazil. The pattern is also robust with alternative indicators of
settlement size and density (Supplementary Fig. 7).

DISCUSSION
Our analysis quantifies the virus transmission risks at different
types of human activity places using evidence from the COVID-
19 pandemic. The work contributes to emerging literature on
the health and resilience of human settlements and takes the
initial steps towards developing a system of knowledge on the
infectiousness of activity places26–28. The results can inform
minimal impact resilience plans for not only the ongoing COVID-
19 but also future public health crisis, as well as long-term
strategy making in reducing the epidemiological risks in human
settlements.
Data from COVID-19 suggests that closing various establish-

ments could, at most, reduce Rt by 27 to 75% in the four sample
countries; in other words, activities at these establishments lead
to 27 to 75% of all infections. The magnitudes of the impacts are
heterogeneous across countries, which could be affected by the
behaviors and interactions at relevant places, socioeconomic
profiles of the visitors, physical conditions of relevant spaces, as
well as the level of enforcement. For example, the small effect
sizes in the United States and Brazil might be related to loose
enforcement and non-compliance, thus might not reflect the
true impact of establishments in virus transmission in the two

countries29,30. The heterogeneous results suggest that while it
sounds strong to draw general conclusions on the infection risks
of activity places, such conclusions could run the risk of over-
simplification and diverge from the reality for individual
countries. Despite the heterogeneity, it is common in the four
sample countries that the closures of essential activity places,
including schools, childcare centers, and offices, do not
demonstrate statistically significant effects in reducing Rt while
closing certain non-essential activity places, including sports
fields, entertainment venues, and restaurants, tend to be more
effective. Resilience plans for future public health crisis could first
consider interventions targeted at these places, which is likely to
be more cost-effective.
A few issues regarding our effect estimates should be noted.

Our effect estimates are smaller than many existing studies on
COVID-19 intervention effects, e.g. we do not find a significant
effect of school closure in reducing Rt. On one hand, it could be
because the DiD approach is able to partly rule out the impact of
increased self-protection happening simultaneously with inter-
ventions. On the other hand, it could also be a limitation of our
data as the data are from only four countries and from the early
phase when interventions were implemented close to each other.
As a result, our effect estimates of activity place closures are
associated with large confidence intervals, which may actually
contain the estimates from other studies. Besides, for Brazil, our
estimates show that the closures of a few establishments increase
Rt. A possible reason is that the enforcement level of venue
closures might be loose in Brazil as there were conflicting opinions
towards the interventions (Supplementary Notes). Another expla-
nation could be related to the wide existence of ghettos in
Brazilian cities, where the high density might increase the chance
of transmission when people stay more at home. And for the UK,
larger variations are associated with the effect estimates,
especially for retail closure (Supplementary Fig. 5). This is because
there is little cross-city variation in the timing of venue closures in
the UK, so the effect estimates are largely impacted by the
pandemic dynamics in the few cities taking different intervention
schemes. Last, the chance of virus transmission at a specific
establishment could also be related to its popularity, the socio-
economic portfolio of its visitors31, etc. The effects we identify
should be interpreted as an average of the impacts of closing
individual places of a certain type.
For macro-scale settlement characteristics, our findings contra-

dict the common belief that large and densely populated cities are
more vulnerable to infectious disease32. This could either be
because the seemingly increased connectivity and proximity
among people in large and dense cities do not actually enhance
the chance for virus transmission, or such an effect does exist but
is offset by other positive factors, such as more healthcare
resources driven by the economy of scale and more cautious
behavior of people. The exact causal chain could also involve the
demography, education, economy, and even partisanship in
different types of settlements24,33, which is subject to further
study. Either way, these results lend more confidence to
encouraging the agglomeration of people and high-density
development. It should be noted that some previous studies
demonstrate a positive relationship between city size and
transmission3. This is not necessarily contradictory to our results,
since different pandemic indicators are used. For example, Hamidi
et al. take infection rate as the dependent variable. Suppose that a
small city and a large city have infection numbers proportional to
their population size, the large city would have a higher infection
rate after some time, since infections grow exponentially. There-
fore, when using the infection rate as the pandemic indicator,
large cities tend to have larger numbers.
The finding that the eleven types of establishments account for

a smaller proportion of infections in relatively large settlements
suggests that more infections take place in public spaces other

Fig. 2 Estimated impacts of closing individual types of establish-
ments. The numbers are direct model outputs on the relationship
between establishment status (0, 0.5, or 1) and Δlog(Rt). Full results
are presented in Supplementary Table 2. The error bars represent
95% confidence intervals.
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than the confined areas of establishments in large settlements,
which might be explained by generally longer travel distances in
large settlements thus more contacts on streets, public transits,
etc. It indicates that governments could rely less on closing
establishments, which is economically risky, and resort to other
measures to reduce infection transmission in large cities, such as
contact tracing or more intense disinfection of public spaces.
Nonetheless, our findings could be affected by a number of

limitations. First, besides human activities and physical environ-
ments, the virus transmission risks are also affected by the
characteristics of pathogens, including the means of transmission,
the susceptible population group, etc. The findings drawn from
COVID-19 might apply to respiratory infectious diseases, but might
not reflect the risks associated with other infectious diseases,
which would further contribute to a system of knowledge on the
infectiousness of places.
Second, in terms of the causal identification strategy, the DiD

method requires both parallel trend and exogeneity of the
treatment. While the parallel trend assumption is examined with
an event-study design (Supplementary Methods), the exogeneity
assumption could be challenged by unobserved confounders that
affect both Rt and the closure of establishments. Though we are
able to rule out a number of confounders by including a large set
of government intervention variables as well as a unit and day-
fixed effects, there could still be endogeneity arising from omitted
unit-specific time-varying factors. For instance, a sudden outburst
of infections in a hotspot may affect both governments’

interventions and local residents’ cautionary behavior, which then
affects Rt.
Third, since the impacts of closing different types of establish-

ments are estimated in one model, the results could be subject to
the so-called “table 2 fallacy,” which refers to that the coefficients
of confounders in a model are wrongly interpreted as full causal
effects while they are actually only the direct effects34. This
problem applies if decisions to close or reopen establishments
affect each other so that they become confounders. While this is
possible, we suppose such a relationship should be weak since
these decisions tend to be more directly affected by the trends of
infections, instead of the status of other interventions.
Fourth, we assume a linear relationship between Rt and the

independent variables in the entire analysis, which is a convenient
assumption made by many studies on intervention effects in
COVID-198,10,12,16,35. However, the impact of closing one type of
establishment may rely on the status of other establishments,
since the corresponding activities could be complementary or
substitutive to each other, leading to interacting effects. It is
encouraging that studies which examine nonlinear relationships
and sequence of interventions do not find significant pat-
terns8,36,37, but the issue cannot be ignored.
Our work systematically examines the role of multitype and

multiscale activity places in the transmission of infectious disease.
Actually, public health concerns have been a key factor in shaping
the planning and management of cities as early as the time of
John Snow at the advent of modern cities. Our findings show that
with increased human agglomeration and interaction, epidemic

Fig. 3 Maximum joint impacts of closing a number of establishments. We show the maximum impacts that could be achieved by closing a
given number of establishment types, till the maximum joint impacts are produced. The error bars represent 95% confidence intervals.
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control no longer only involves confined areas such as hospitals or
the water supply system, but also the entire urban space.
Improving our knowledge of the linkage between places, human
activities, and diseases would be important for long-and short-
term policy-making in public health, urban resilience, and the
planning of human settlement.

METHODS
Data
We curate a data set combining daily infection cases, government
interventions (including establishment closures, stay-at-home
orders, and gathering bans), and the spatial, demographic and
economic characteristics of the spatial units in our study, from the
onset of the pandemic till August 15, 2020. The spatial units are 45
prefectures in Japan, 234 local authority districts in the United
Kingdom, 308 metropolitan statistical areas in the United States,
and 319 municipalities in Brazil (detailed explanations on the
choice of spatial units in Supplementary Methods). Note that the
prefectures (the first-level administrative division) of Japan are
larger than the spatial units in other countries and contain more
than one large settlement in many cases. However, infection data
can only be consistently acquired at this level in Japan37, so it is
taken as the unit of analysis. Nonetheless, we prove that the
choice of spatial units would not substantially affect the results
(Supplementary Methods).
The infection case data are sourced from Japan Broadcasting

Corporation’s case reports, the UK government, Johns Hopkins
University, and the Brazilian Ministry of Health. The timetable of
government interventions is manually collected from the
websites of national and state-level governments, which are
the main levels of authorities making decisions on interventions.
The settlement-related information is gathered from a number
of official websites. More details on data sources are provided in
Supplementary Methods.

Estimating impacts of closing individual types of
establishments
The causal impacts of closing individual types of establishments
across all spatial units and subgroups of spatial units in a country
are estimated with a two-way fixed effect model specified as
follows

log Rc; i; t
� � ¼ βcXc; i; t þ θcZc; i; t þ αc; i þ τc; t þ εc; i; t (1)

where log(Rc,i,t) is the log-transformed instantaneous repro-
duction number in unit i of country c on day t; Xc,i,t is a vector
denoting the status of the 11 types of establishments, and βc
denotes the corresponding coefficients to estimate. We log-
transform Rc,i,t following the practice of relevant works10,14,
based on the plausible assumption that the reduction of Rc,i,t
by the closure of establishments should be proportional to the
proportion of contacts avoided instead of an absolute value,
and the impacts should be smaller when Rc,i,t is already low.
Zc,i,t and θc denote the status of five other government
interventions and their coefficients (detailed description of
these interventions in Supplementary Table 1); αc,i and τc,t
denote the unit and time fixed effects, respectively; and εc,i,t
denotes the error term. For the uncertainty over the
parameters, we estimate robust standard errors allowing for
εc,i,t to cluster at the unit level, to account for heterogeneity in
the treatment effects38. If the statuses of two types of
establishments are highly correlated in a country (Kendall’s
correlation coefficients larger than 0.95), then they are treated
as one combined type to avoid collinearity (Fig. 1).

Estimating joint impacts of multiple establishments
The point estimates of the joint impacts are computed by
summing the corresponding coefficients estimated by Eq. (1):P

s2P βc; s , where βc,s denotes the coefficient of closing establish-
ment s in country c and P denotes a set of establishments. The
standard errors are computed from the robust standard errors and
covariances as follows

SEc; P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

s2P
SE2c; s þ

X

s2P; s02P; s≠s0
COVc; s; s0

s

(2)

where SEc,P denotes the standard error of the joint impacts of set P
in country c; SEc,s denotes the robust standard error of closing
establishment s estimated by Eq. (1); and COVc,s,s’ is the covariance
between the impacts of establishment s and s’.

Estimating impacts of macro-scale settlement characteristics
We take the unit fixed effects estimated by Eq. (1), which can be
interpreted as the intrinsic reproduction number in each
spatial unit, and model their relationship with the size and
density of settlements while controlling for the proportion of
the elder population (over 65 or 60 years old depending on
data availability), the proportion of Black and Asian (in the

Table 1. Impact of settlement characteristics on the intrinsic speed of virus spread.

Characteristics Japan United Kingdom United States Brazil

Size −0.118 (0.113) −0.029** (0.0111) −0.0219*** (0.00531) −0.0506*** (0.0139)

Density −0.203 (0.392) −0.00108 (0.00539) 0.00453 (0.0201) −0.0184** (0.00648)

Proportion of elderly population −0.102 (2.29) −0.0325 (0.2) 0.535*** (0.155) −0.228 (0.387)

Proportion of Black – −0.105 (0.425) −0.000726 (0.000542) –

Proportion of Asian – 0.162 (0.124) 0.00304* (0.00148) –

Personal income −0.125 (0.105) – −0.00686*** (0.000926) 0.105* (0.0435)

GDP per capita 0.00494 (0.00855) −0.00123* (0.000592) 0.002** (0.000635) −0.000228 (0.000374)

(Intercept) 0.781 (1.68) −0.158** (0.0514) 0.101** (0.0386) 0.217*** (0.0463)

Observations 44 234 307 319

R-squared 0.294 0.0622 0.345 0.125

Adjusted R-squared 0.198 0.0373 0.329 0.111

Results in this table are based on samples excluding outliers (Shimane in Japan, Mendip in the United Kingdom, and Indianapolis-Carmel-Anderson, Pittsfield,
and San Angelo in the United States), so that the residuals are normally distributed (Shapiro–Wilk test p > 0.05). Results on full samples are very similar (shown
in Supplementary Table 4). The variance inflation factors are all below 7.
*p < 0.05, **p < 0.01, ***p < 0.001
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United Kingdom and the United States only), the average
income of residents and the per capita gross domestic product,
using simple linear regression.

αc;i ¼ σc;1DENSITYc;i þ σc;2POPULATIONc;i þ σc;3OLDc;i þ σc;4BLACKc;i
þ σc;5ASIANc;i þ σc;6INCOMEc;i þ σc;7GDPc;i þ ψc þ ξc;i

(3)

where DENSITYc,i, POPULATIONc,i, OLDc,i, BLACKc,i, ASIANc,i, INCO-
MEc,i, and GDPc,i denote the density, population size, proportion of
the elder population, proportion of Black, proportion of Asian,
residents’ income and per capita gross domestic product in unit i;
σc,1 to σc,7 are their coefficients; ψc is the constant and ξc,i is the
error term.

DATA AVAILABILITY
The datasets used in the study are available in the Github repository, https://
github.com/lunliu454/infect_place.

CODE AVAILABILITY
All codes for analysis and visualization presented in this manuscript is available at
https://github.com/lunliu454/infect_place. This work is licensed under a Creative
Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is
properly cited. To view a copy of this license, visit https://creativecommons.org/
licenses/by/4.0/.

Received: 4 December 2021; Accepted: 20 October 2022;

REFERENCES
1. Bettencourt, L. M., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, inno-

vation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. USA 104,
7301–7306 (2007).

2. Glaeser, E. Cities, productivity, and quality of life. Science 333, 592–594 (2011).
3. Hamidi, S., Sabouri, S. & Ewing, R. Does density aggravate the COVID-19 pandemic?

Early findings and lessons for planners. J. Am. Plann. Assoc. 86, 495–509 (2020).

Fig. 4 Impact of establishment closures in settlements with different population size and density. a Comparison of the impacts in
relatively large and small, and high and low density settlements, split by the median settlement population size and density in the sample.
b Comparison of the impacts using different population size and density cut-off values. The error bars and ribbons represent 95% confidence
intervals.

L. Liu et al.

7

Published in partnership with RMIT University npj Urban Sustainability (2022)    28 

https://github.com/lunliu454/infect_place
https://github.com/lunliu454/infect_place
https://github.com/lunliu454/infect_place
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


4. Ribeiro, H. V., Sunahara, A. S., Sutton, J., Perc, M. & Hanley, Q. S. City size and the
spreading of COVID-19 in Brazil. PLoS ONE 15, e0239699 (2020).

5. Bettencourt, L. M. The origins of scaling in cities. Science 340, 1438–1441 (2013).
6. Li, Y. et al. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated

restaurant. Build. Environ. 196, 107788 (2021).
7. Vuorinen, V. et al. Modelling aerosol transport and virus exposure with numerical

simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci.
130, 104866 (2020).

8. Bo, Y. et al. Effectiveness of non-pharmaceutical interventions on COVID-19
transmission in 190 countries from 23 January to 13 April 2020. Int. J. Infect. Dis.
102, 247–253 (2021).

9. Sharma, M. et al. Understanding the effectiveness of government interventions
against the resurgence of COVID-19 in Europe. Nat Commun 12, 5820 (2021).

10. Brauner, J. M. et al. Inferring the effectiveness of government interventions
against COVID-19. Science 371, eabd9338 (2021).

11. Cho, S. Quantifying the impact of nonpharmaceutical interventions during the
COVID-19 outbreak: the case of Sweden. Econom. J. 23, 323–344 (2020).

12. Dave, D., Friedson, A. I., Matsuzawa, K. & Sabia, J. J. When do shelter-in-place
orders fight COVID-19 best? Policy heterogeneity across states and adoption
time. Econ. Inq. 59, 29–52 (2021).

13. Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the
effectiveness of interventions. Science 369, eabb9789 (2020).

14. Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on
COVID-19 in Europe. Nature 584, 257–261 (2020).

15. Fowler, J. H., Hill, S. J., Levin, R. & Obradovich, N. Stay-at-home orders associate
with subsequent decreases in COVID-19 cases and fatalities in the United States.
PLoS ONE 16, e0248849 (2021).

16. Islam, N. et al. Physical distancing interventions and incidence of coronavirus
disease 2019: Natural experiment in 149 countries. BMJ 370, m2743 (2020).

17. Singh, S., Shaikh, M., Hauck, K. & Miraldo, M. Impacts of introducing and lifting
nonpharmaceutical interventions on COVID-19 daily growth rate and compliance
in the United States. Proc. Natl. Acad. Sci. USA 118, e2021359118 (2021).

18. Banholzer, N. et al. Estimating the effects of non-pharmaceutical interventions on
the number of new infections with COVID-19 during the first epidemic wave.
PLoS ONE 16, e0252827 (2021).

19. Batty, M. The New Science of Cities (MIT Press, 2013).
20. Goodman-Bacon, A. & Marcus, J. Using difference-in-differences to identify causal

effects of COVID-19 policies. Surv. Res. Methods 14, 153–158 (2020).
21. Liu, L., Zhang, Z., Wang, H. & Shenhao, W. Impact of modelling approach on the

estimation of government intervention effects in COVID-19. Preprint at https://
doi.org/10.21203/rs.3.rs-1069729/v1 (2021).

22. Angrist, J. D. & Pischke, J. Mostly Harmless Econometrics (Princeton Univ. Press,
2008).

23. Ewing, R. & Hamidi, S. Compactness versus sprawl: a review of recent evidence
from the United States. J. Plan. Lit. 30, 413–432 (2015).

24. Haischer, M. H. et al. Who is wearing a mask? Gender-, age-, and location-related
differences during the COVID-19 pandemic. PLoS ONE 15, e0240785 (2020).

25. Harris, J. E. Critical role of the subways in the initial spread of SARS-CoV-2 in New
York City, Frontiers in Public Health 9, 754767 (2021).

26. Tian, H. et al. Urbanization prolongs hantavirus epidemics in cities. Proc. Natl.
Acad. Sci. USA 115, 4707–4712 (2018).

27. Corburn, J. Toward the Healthy City: People, Places, and the Politics of Urban
Planning (MIT Press, 2009).

28. Vale, L. J. The Resilient City: How Modern Cities Recover from Disaster (Oxford Univ.
Press, 2005).

29. Witte, G. Coronavirus shutdowns have gone nationwide. Many police depart-
ments aren’t enforcing them. The Washington Post (25 March 2020).

30. Mello, G. & Gaier, R. V. Brazil lockdowns, attacked by Bolsonaro, begin to slip.
Reuters (9 April 2020).

31. Chang, S. et al. Mobility network models of COVID-19 explain inequities and
inform reopening. Nature 589, 82–87 (2021).

32. Shoichet, C. E. & Jones, A. Coronavirus is making some people rethink where they
want to live. CNN (2 May 2020).

33. Gadarian, S. K., Goodman, S. W. & Pepinsky, T. B. Partisanship, health behavior,
and policy attitudes in the early stages of the COVID-19 pandemic. PLoS ONE 16,
e0249596 (2021).

34. Westreich, D. & Greenland, S. The table 2 fallacy: presenting and interpreting
confounder and modifier coefficients. Am. J. Epidemiol. 177, 292–298 (2013).

35. Hsiang, S. et al. The effect of large-scale anti-contagion policies on the COVID-19
pandemic. Nature 584, 262–267 (2020).

36. Zhao, M., Holtz, D. & Aral, S. Interdependent program evaluation: geographic and
social spillovers in COVID-19 closures and reopenings in the United States. Sci.
Adv. 7, eabe7733 (2021).

37. Haug, N. et al. Ranking the effectiveness of worldwide COVID-19 government
interventions. Nat. Hum. Behav. 4, 1303–1312 (2020).

38. Abadie, A., Athey, S., Imbens, G. W. & Wooldridge, J. When should you adjust
standard errors for clustering? Q. J. Econ., qjac038 (2022).

ACKNOWLEDGEMENTS
This work is supported by the Beijing Social Science Foundation (20GLA003, L.L.),
the Tsinghua University Spring Breeze Fund (2021Z99CFY038, H.W.), the National
Natural Science Foundation of China (52008005, L.L.), the National Social
Science Fund of China (19FGLB069, L.L.) and the Institute of Public Governance,
Peking University (YQZX202005, TDXM202104, L.L.). We thank the High-
performance Computing Platform of Peking University for providing the computa-
tion resource.

AUTHOR CONTRIBUTIONS
L.L. and H.W. conceptualized the study. T.L., C.O.C., Y.W., R.D., C.T., and O.I.A.-I. collated
and cleaned the government intervention data and urban socioeconomic data. Z.Z.
and W.Z. collated and cleaned the infection case data. L.L., H.W., Z.Z., and W.Z.
performed the analyses. L.L. and H.W. wrote the first draft of the manuscript. L.L.,
H.W., S.W., and E.A.S. revised and finalized the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42949-022-00074-w.

Correspondence and requests for materials should be addressed to Lun Liu or Hui
Wang.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

L. Liu et al.

8

npj Urban Sustainability (2022)    28 Published in partnership with RMIT University

https://doi.org/10.21203/rs.3.rs-1069729/v1
https://doi.org/10.21203/rs.3.rs-1069729/v1
https://doi.org/10.1038/s42949-022-00074-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Infectiousness of places &#x02013; Impact of multiscale human activity places in the transmission of COVID-19
	Introduction
	Results
	Infection risks at micro-scale establishments
	Infection risks at macro-scale settlements
	Varying risks by the interaction between the two scales

	Discussion
	Methods
	Data
	Estimating impacts of closing individual types of establishments
	Estimating joint impacts of multiple establishments
	Estimating impacts of macro-scale settlement characteristics

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




